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Report: 

 

The spectroscopic experiments were carried out at the Rossendorf Beamline - ROBL20 of the ESRF 

between 24th of May 2022 until 30th of May 2022. The investigation accounts for removal of U by synthetic 

zeolites as prospective sorbents possible to be hydrothermally synthesized out of industrial by-products (fly-

ashes) and applied as water purification agents from highly valent radionuclides. Zeolites of both the natural 

origin (Chmielewská et al., 2022; Jiménez-Reyes et al., 2021; Khan et al., 2021) as well as synthesized out of 

raw materials, such as kaolinite and fly-ash (Boycheva et al., 2020) were previously widely used in water 

purification from uranium.  

In the present study, we have investigated the U removed from water solutions by synthetic zeolites 

resembling  naturally occuring structures of the sodium faujasite (FAU), gismondite (GIS) and (LTA) zeolites. 

We have investigated how different speciation of U present in water solution once varying pH conditions are 

applied, affects both sorption properties of studied materials as well as their removal efficiency. In total, during 

the six days of the allocated beamtime, we were able to measure 16 samples (15 zeolites = 5 structures on 3 

equilibrium pH levels - 4, 7 and 10 + one reference, pure U salt - UO2(NO3)2) at both U-M4 and U-L3 edges 

together with long scans on U-L3 edge to measure the EXAFS spectroscopy region.  

The spectometer was aligned using the reference compound UO2(NO3)2, the geometry was optimized 

for recording Mβ or Lα emission line for U M4 and U L3 edges.  
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Obtained U-M4 spectra revealed U removed onto assessed synthetic zeolites at various pH keeps the 

hexavalent oxidation state after sorption. Small energy shifts ~0.6eV (Table.1) are visible on the M4 spectrum 

for LTA zeolite. Such energy shift can be associated with shortening the axial O=U=O bond length of around 

0.035Å in the hexagonal bipyramid (Boulanger et al., 2020). This further showcases the partially-hydroxylated 

uranyl cation’s free diffusion inside the zeolite’s channels caused by distorted structure of LTA zeolite 

crystallites where the diffusion process itself might be deteriorated. In the case when zeolite crystallites are well 

developed after the hydrothermal synthesis (based on the SEM microimges with EDS chemical analysis in the 

microspot), the energy shift in the region of 3732.4eV ± 0.4eV does not appear as clearly visible for both, NaP1-

FA (GIS) zeolite as well as NaX-FA (FAU) zeolite, independently of the reaction’s pH. Furthermore it can be 

concluded, that the peaks with highest intensities around 3726.6eV, are present for zeolites reacted under the 

neutral pH region, where sorption of U has the highest values, equals to 918.41ppm U and 892.71ppm U, for 

FAU and GIS zeolites, respectively (Figure 1.). For acidic pH (pHeq ~ 4) and basic pH (pHeq ~ 10) the peaks 

intensities lower down, hence U sorption efficiency lowers as well which is observable onto U-M4 spectrums 

unanimously for all three studied synthetic zeolites.  

The spectra obtained at U L3-edge reveal the similar pattern and confirms observations from the U M4-

edge measurements. At basic pH, uranyl dication (UO2
2+) forms neutral or negatively charged polyhydroxo- 

uranyl species (UO2(OH)2, UO2(OH)3
- (Maher et al., 2013) that perturbates zeolites sorption efficiency due to 

the electrostatic interactions between sorbent and the sorbate along with free diffusion where large uranyl 

hydroxy complexes are unable to penetrate the channels and cavities in the zeolite structure due to size-selective 

repulsion of too large ionic species.   

To conclude, all U removed by investigated zeolitic sorbents is present at the hexavalent oxidation state, 

independently of the reaction’s pH and structure of the zeolite. An ion-exchange with extraframework Na+ 

cations along with U precipitation in the form of Na-metaschoepite are eluciadated as the predominant sorption 

mechanisms responsible for the U removal on studied zeolites (complementariliy to U-M4 and U-L3 edges 

HERFD-XANES spectrums, based on the XPS peak of U 4f7/2 equals to 382.2eV of the binding energy) (Ilton 

& Bagus, 2011). Therefore, at neutral pH range, uranium is also immobilized on the studied materials, in the 

form of three-dimensional solid mineral precipitate. Moreover, the micromorphology of the zeolite crystals 

affects the sorption of U, which is visible as energy shifts in the region close to 3732eV on U-M4 spectrum for 

LTA zeolite, which crystals are insufficiently crystallized, probably due to limitations originating from the 

applied hydrothermal synthesis procedure and complex raw material use as a hydrothrmal reaction substrate 

(coal fly-ash).  
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Figure 1. U-M4 spectras for all assessed zeolite samples at varying pH conditions (NaP1-FA - GIS structure, NaA-FA- LTA 

structure, NaX-FA - FAU structure) along with the reference salt spectrum - UO2(NO3) 
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Table 1. U-M4 peak positions for all assessed synthetic zeolites with energy shifts at varying pH and maximum U sorption 

capacity marked in bold  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. U-L3 spectras for all assessed zeolite samples at varying pH conditions (NaP1-FA - GIS structure, NaA-FA- LTA 

structure, NaX-FA - FAU structure) along with the reference salt spectrum - UO2(NO3) 
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