European Synchrotron Radiation Facility

INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

Experiment Report Form

ESRF	Experiment title: Magnetoelastic coupling and insulator-metal transition in TlNiO ₃ perovskite nickelate	Experiment number: HC4990
Beamline:	Date of experiment:	Date of report:
ID22	from: 24/08/2022 to: 28/08/2022	27/09/2022
Shifts:	Local contact(s):	Received at ESRF:
12	Catherine Dejoie	
Names and affiliations of applicants (* indicates experimentalists):		
João Elias FIGUEIREDO SOARES RODRIGUES ¹		
José Antonio ALONSO ²		
Javier Gainza ²		
Romualdo SILVA ²		
¹ European Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France.		
² Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, E-28049 Madrid, Spain.		

Report:

In the provided beam time we started by a well-known perovskite, HoNiO₃, taken as a reference, for which we obtained excellent high-angular resolution patterns in ID22, working with a wavelength of λ = 0.35418 Å, measuring in the 2 θ range up to 40°, with two 9 min acquisition per pattern. The sample was contained in a 0.4 mm glass capillary. **Fig. 1a** shows the Rietveld plot of HoNiO₃ at RT, with a inset showing the peak splitting between (224) and (-224) reflections, due to the charge disproportionation effect and the subtle monoclinic symmetry with β = 90.083(1)°. This sample was cooled down to 4 K and then warmed up while measuring up to RT, collecting diagrams every 9 min, in order to follow the thermal evolution of the crystal structure across T_N ~ 145 K ^[1]. Once established the experimental conditions, the TlNiO₃ sample was measured at 295 K and then cooled down to 4 K, following the same protocol. **Fig 1b** exhibits the quality of the fit at 295 K, in the monoclinic *P*2₁/*n* space group. In this case, the monoclinic distortion is much weaker, and can be hardly distinguished, with β = 90.03(1)°, as described before from neutron diffraction data ^[2]. Nevertheless, the unique convergence of the atomic positions for the three distinct O atoms demonstrate that the internal symmetry is indeed monoclinic.

Fig. 1: Rietveld plots of **a** HoNiO₃ and **b** TlNiO₃ collected at RT at the high-resolution ID22 diffractometer. The inset illustrates the splitting of two characteristic reflections (-224) and (224) indicating the monoclinic symmetry of this material in the insulating regime, below the MI transition.

The low-temperature evolution of the unit cell parameters unveils strong magnetoelastic coupling when the structure evolves across the T_N, either for HoNiO₃ and TlNiO₃. Anomalous negative thermal expansion effects are observed for *b* lattice parameters, and the monoclinic beta angle experiences a non-monotonic behavior in the proximity of T_N. A publication to describe these effects is in progress. Beyond that, we have probed the unreported insulator-metal transition in TlNiO₃ using synchrotron X-ray diffraction. The results showed a clear sample decomposition for temperatures higher than 600 K; however, anomalies along the lattice parameters at the onset of the structural phase transition $P2_1/n \rightarrow Pbnm$ were detected. Such results are in agreement with our previous EXAFS investigation, as summarized below.

To provide additional information on the insulator-metal transition in TlNiO₃, we have probed the EXAFS data at high-temperatures. **Fig. 2a** shows the Fourier-transform EXAFS oscillations $|\chi(R)|$ under ambient pressure and at temperatures ranging from 300 and 550 K. Few temperature points from room temperature up to 625 K were used to investigate the insulator-metal transition, which is expected at $T_{IM} \sim 600$ K. The radial distribution can be divided in three parts: at 2 Å, 2.5–3.3 Å, and 3.6 Å, concerning the pairs Ni–O, Ni–Tl, and Ni–Ni, respectively. The pair-distances and their Debye-Waller exponents (the parallel MSRDs, $\langle u_{11}^2 \rangle$), as derived from the fitting, with a subtle increase at 550 K, see **Fig. 2b-c**. Above this temperature point, TlNiO₃ started to decompose and signals of NiO appeared in the XANES signal. Such a fact has direct connection with the metastable nature of Tl³⁺ ions within TlNiO₃ perovskite. Later XANES data were taken above 600 K and upon cooling down to room temperature, where only NiO features were observed in those signals.

Fig. 2: Temperature-dependent EXAFS analysis at Ni *K*-edge: **a** Modulus and real part of the Fourier transform EXAFS oscillations $|\chi(R)|$ and $\text{Re}[\chi(R)]$ in *R* space. The open symbols are the experimental data, while solid lines are the best fit adjusted. Temperature-dependence of **b** the path distances and **c** the Debye-Waller exponent.

References

- [1] M. T. Fernandez-Diaz et al, Phys. Rev. B64, 144417 (2001).
- [2] S. J. Kim et al, Chem. Mater., 14, 4926-4932 (2002).