ESRF	Experiment title: Synthesis and single-crystal X-ray diffraction characterization of novel gadolinium nitrides under high pressures up to 50GPa	Experiment number: CH-6467
Beamline:	Date of experiment:	Date of report:
ID15b	from: 08.09.2022 to: 11.09.2022	02.12.2022
Shifts: 9	Local contact(s): Davide Comboni	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		
Andrii Aslandukov*— Bayerisches Geoinstitut, University of Bayreuth		

Report:

This single-crystal X-ray diffraction experiment aimed to determine crystal structures of novel Gd-N compounds synthesized under pressures up to 50 GPa in laser-heated diamond anvil cells and determine the equation of states and existence pressures of all novel yet-to-be-uncovered gadolinium nitrides phases.

BX90 diamond anvil cell with 250 μ m culet was prepared. A piece of gadolinium was loaded along with molecular nitrogen, acting as a reagent as well as a pressure-transmitting medium. The sample was compressed to 50 GPa and laser-heated to temperatures above 2000 K at our home laboratory in Bayreuth. After laser-hating the pressure increased to 52 GPa.

The X-ray diffraction mapping of the heated sample revealed the formation of a novel phase since diffraction lines not belonging to any known phases (i.e. gadolinium, cubic GdN, or nitrogen) were detected. Single-crystal X-ray diffraction was collected on the positions with the highestquality diffraction spots. The structure of the novel gadolinium-nitrogen compound was fully determined onsite. The solid has the Gd₅N₁₄ stoichiometry and comprises nitrogen dimers (Fig.1 inset). The Gd₅N₁₄ compound is isostructural to Y_5N_{14} , synthesized by our group under similar conditions (49 GPa and 2000 K). To determine the equation of state and existence pressure of Gd₅N₁₄, its decompression in several steps (Fig. 1) down to 1 bar was done. The single-crystal diffraction spots of Gd₅N₁₄ were traced down to 9 GPa, and at 1 bar its diffraction lines could no longer be observed indicating the decomposition of Gd_5N_{14} . Fitting of the Gd_5N_{14} experimental pressure-volume datapoints with the 2nd order Birch-Murnaghan equation of state gives the bulk modulus $K_0=129(12)$ GPa.

Figure. 1. Pressure-volume data points of the novel Gd_5N_{14} compound and its crystal structure as inset.

The formation of Gd₅N₁₄ compound isostructural to Y_5N_{14} under similar conditions was expected since both metals possess only +3 oxidation state and the ionic radius of gadolinium ion $r(Gd^{3+}) = 1.078$ Å is close to yttrium ionic radius $r(Y^{3+}) = 1.04$ Å. These results demonstrate that M_5N_{14} structure type is common for highpressure rare-earth nitrides and the crystallization in this structure type can be expected for nitrides of M = Tb, Dy, Ho, Er (with $r(M^{3+}) = 1.03-1.06$ Å ionic radii) and perhaps for an even greater number of lanthanides.

The obtained data should result in one scientific publication. This result provides prerequisites for further studying of the Gd-N system at the megabar regime, since the formation of unique polynitrides isostructural to recently discovered Y_2N_{11} and YN_6 with polynitrogen double-helix and N_{18} macrocycles, can be expected.