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Report: 

Introduction : The possibility that a liquid modifies the solid (phonon) dynamic without (flow, heat) transport 

is generally academically not addressed. Recent pioneering experiments have however shown that at several 

millimeters from an interface, the liquid temperature is non-uniform implying that the solid wall induces long 

range vibrational correlations. The mechanism at the origin of interfacial temperatures has to be related to a 

change of the vibrational states; i.e. a modification of the density state of phonons of the solid surface and in the 

bulk. 

Context and methodology :  High energy inelastic Synchrotron radiation was used to focus on the phonon 

dynamics of the solid. As a sample α-Al2O3 monocrystals were chosen, known for being extensively studied in 

the bulk and surface.Wetted α-Al2O3 c-axis (0001) surfaces are known to form a Gibbsite-like intermediary 

layer in contact with liquid water, and surface consequences on macroscopic quantities –such as surface energy- 

are common in the litterature. However, no work has been done on the impact of wetting on acoustic phonons 

in the bulk of the solid. IXS experiment with 3 meV resolution were performed at the ID28 beamline at ESRF 

with 17.794 keV energy. A small energy window was chosen - from -40 meV to 40 meV- to be able to mainly 

observe acoustic phonons. 

 

The methodology is as follows : 

- The experiments were carried out at room temperature and atmospheric pressure. 

- The incident beam probed the sample oriented with the c-axis normal to the disk plane probed in 

reflectometry geometry. 

- α-Al2O3 monocrystals were heated to 450°C then kept at 125°C to ensure no environment surface 

contamination. Monocrystal treated in such a way are considered dry. 

- Placed in a nitrogen filled containment, the dry crystal was then scanned using reflectometry in two 

Brillouin zones at different depths, (0 0 12) and (-1 0 14), at ~300µm and ~150µm respectively, 

- The crystal was then sprayed with liquid, replaced in the nitrogen atmosphere, and each Brillouin zone 

was scanned alternatively for ~ 12h, to see if a kinematic effect due to wetting takes place.  

 

The influence of multiple liquid wettings were tested on: H2O, D2O, Ethanol-H and Ethanol-D.  

Furthermore, a small 4h experiment was performed once with H2O wetting which followed the same procedure, 

but only scanning between 20 and 30 meV, to follow the displacement of a given transverse phonon with better 

time resolution (each scan counts ~12min).  



 

Each scan was then fitted using fit28 and addIXS. All experiments were carried out smoothly and efficiently, 

and we thank all the ID28 staff for their precious help and expertise.  

 

Experimental results : For brevity, only the results due to H2O wetting are discussed. Similar trends have been 

observed in D2O, as well as ethanol-H and ethanol-D, but these results have not yet been fully analysed.  

 

Key results have been obtained :  

1. Dramatic changes of the phonon spectrum when wetting, fully justifying the present experiment and 

definitively establishing a deep impact of the surface wetting on the solid bulk dynamics. 

2. Wetting induced hardening has been observed for both transverse and longitudinal phonons over a 

large time acquisition (Fig.1a). 

3. Long term kinematics of hardening takes place in ~6h (Fig.1a and 1b). 

4. Identification of an elastic peak (at E=0) that disappears when wetting (Fig.1c) 

5. The elastic peak vanishes at a timescale of ~3h (Fig.1c), thus exhibiting different kinematics than 

hardening kinematics. 

6. Wetting induced hardening is depth dependent. 150µm depth scan reveal hardening, increasing both 

longitudinal and translationnal velocities (Fig.2a). However, at 300µm penetration depth, no clear 

hardening and difference in longitudinal sound velocities were observed (Fig.2b). 
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Fig 1 : (a) IXS spectra at (-1.29 0 14.682) at penetration depth ~150µm. A clear change of phonon spectra is observed with 

wetting, with phonon peaks shifting to higher energies, corresponding to hardening. (b) Kinematics of hardening at (-1.29 0 

14.682). A slow relaxation is observed that lasts more than 4h. (c) Kinematics of elastic peak (0 0 12.5) at ~300µm penetration 

depth. The E=0 peak vanishes after 3hrs, exhibiting a different kinematic than hardening. 

Fig 2 : (a). Dispersion curves obtained with 4 analysers in a given direction at ~150 µm penetration depth. The relative effects 

of wetting after 12hrs on sound velocities are 3% for the longitudinal and 5% for the transverse branches. (b) Dispersion curves 

in Γ-Z direction from (0012) Bragg peak, at large depth (300µm): the impact of wetting after 12hrs on longitudinal acoustic 

phonons is not visible. 


