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Report: 

 

The colossal magnetoresistance (CMR) in manganite perovskites has been extensively investigated, with the 

key regime identified around x = 3/8 in La1-xCaxMnO3 (LCMO) to exhibit maximum MR effect. However, 

complications of the LCMO system associated with electronic phase separation have prevented an atomistic-

level understanding of the lattice, charge and orbital degrees of freedom in the phase diagram. Recently, we 

have used a prototype AMnA’
3MnB

4O12 quadruple perovskite (A = Na1− Cax and La1−xCax), prepared with high 

pressure synthesis techniques, to tackle this issue.1 With high resolution synchrotron x-ray diffraction data 

obtained from ID22 and detailed crystallographic analysis, a compositional phase diagram, showing the 

evolution of the distortion modes associated with the various kinds of orbital order (OO), was obtained. A new 

kind of OO was revealed at the critical doping level Na0.4Ca0.6Mn3Mn4O12 (MnB ~ Mn+3.375) consisting of orbital 

ordered and charge disordered stripes. Such a phase provides the missing intermediate states between C-type 

orbital order (MnB = Mn3+, A = La) and the CE-type charge and OO (MnB = Mn3.5+, A = Na) insulating phase, 

from which CMR is thought to emerge. 

 

On the other hand, we have found related HgMn3Mn4O12 (HMO) to exhibit a polar ground state on account of 

charge transfer, between A and B sites, followed by G-type charge and orbital order on the B-sub lattice at low 

temperature.2 Such behavior was not observed in the CaMn3Mn4O12 analogue, which forms instead an 

intermediate C-type orbital ordered structure with rhombohedral symmetry. This indicates that the mercury 

cation (Hg2+ with filled 5d10 orbital) plays a crucial role in the intertwined charge, orbital and spin coupling and 

the physical properties of HMO. These AMnA’
3MnB

4O12 thus show an even richer orbital and charge ordered 

physics than their canonical LCMO counterparts. 

 
To investigate more fully how the precise pattern of charge and orbital ordering, and hence properties, can be 

tuned in these fascinating materials, we have synthesised the novel series of materials Hg1-x 

(La,Ca,Na)xMn3Mn4O12, with single chemical substitution of either La, Ca, Na for Hg at the A-site, under high 



 

pressure conditions. The substitution results in not only the tuning of the charge on the B-site, but also the unique 

series of structural phase transitions observed across the series. Therefore, in order to resolve the weak 

superstructure peaks, monoclinic and tetragonal pseudo-symmetry-breaking distortions in these materials that 

are associated with their different orbital ordered states, the high resolution data obtained by ID22 was required.  

 

High resolution synchrotron powder X-ray diffraction data were collected in the temperature range 10 K ≤ T ≤ 

300 K for the compositions in the series Hg1-x(La,Ca,Na)xMn3Mn4O12 (0 < x ≤ 0.5), with representative datasets 

at 300 K and 10 K shown in Figures 1 and 2. For the Na substituted series, at 300 K the evolution of 

rhombohedral to cubic space group symmetries is observed as a function of Na composition at a critical point 

of x = 0.3 (Figure 1). Furthermore, in comparison to the datasets collected at 10 K a temperature-induced phase 

transition from rhombohedral to orthorhombic symmetries is observed for compositions in the range 0.05 ≤ x ≤ 

0.3, while for the higher substitutions it is likely that a cumulation of cubic, orthorhombic and monoclinic phases 

are present. For the La-substituted series, rhombohedral symmetry is preserved as a function of composition at 

300 K, as shown in Figure 2. Upon cooling to 10 K, orthorhombic symmetry is rapidly suppressed as a function 

of composition. Preliminary Rietveld refinements for the x = 0.05 and 0.10 compositions indicate both 

rhombohedral and orthorhombic phases emerge upon cooling to 10 K (Figure 2), while for x ≥ 0.15 only the 

rhombohedral phase is present.  

Next steps in the data analysis for these datasets includes the optimisation of Rietveld refinements of various 

structual models used to describe the rich orbital ordering regimes present in the quadruple manganite 

perovskites. Additionally, datasets with compositions involving Ca-substitution will be further investigated once 

the Na and La series have been more fully mapped, whereby signatures of incommensurability are present in 

this series and not in the latter two series.  Furthermore, by using the symmetry-motivated basis of irrreducible 

representation analysis, the evolution of the distortion modes controlling the emergence of the different orbtial 

ordered states will be systematically tracked as a function of temperature and composition. This will then provide 

mechanistic insight into how the different orbital regimes arise, enabling us to understand how these structural 

distortions couple together and give rise to useful technological properties including mangetoelectric and 

magnetoresistance effects.  
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Figure 2: Compositional evolution of peak splitting 

at T = 300 K (left) and 10 K (right). Asterisks mark 

distinguishable Pnn2 reflections in the x = 0.05 

dataset, while the “+” symbol denotes highly 

strained Pnn2 reflections present in the x = 0.10 

pattern (confirmed by Rietveld refinement). 

Figure 1: Compositional evolution of peak 

splitting at T = 300 K (left) and 10 K (right). 

Confirmed by Rietveld refinements,  

rhomboderal R-3 (0.05 ≤ x ≤ 0.3) and cubic Im-

3 (x = 0.4, 0.5) space groups are observed at 300 

K. At 10 K, respective compositions undergo an 

R-3 to Pnn2 phase transition, while for x = 0.4 

and 0.5 the phase transition is less clear, 

adopting cumulations of cubic, monoclinic, and 

orthothombic phases.   


