| | Experiment title: Resonant | |------|--| | FSDE | X-ray magnetic scattering at the M ₄ and M ₅ | | ESKI | | Experiment number: HE710 | Beamline: | Date of experiment: | | | Date of report: | |-----------|---------------------|-------------------|----------|-----------------| | ID20 | from: 17/11/99 | to: | 22/11/99 | 23/6/00 | | Shifts: | Local contact(s): | Received at ESRF: | | | | 18 | D. Mannix* | | | | Names and affiliations of applicants (* indicates experimentalists): - D. Mannix*. EITU, Karlsruhe D-76125, Germany. - G.H. Lander*. EITU, Karlsruhe D-76125, Germany. - N. Bernhoeft*. CEA, Grenoble, France. - R. Caciuffo*. University of Ancona, Italy. ## Report: From the first explaination of resonant x-ray magnetic scattering (RXMS), that was observed at the L absorption edges of Holmium, it was realised that the largest effects would be found in diffraction at the $M_{4,5}$ edges of the actinides. This is because large dipole transitions directly couple to the magnetic 5f states at these edges. Recently, we have successfully determined the magnetic structure of NpO₂, taking advantage of the large XRMS at the M_4 edge of neptunium [1]. The magnetic structure of NpO₂ had remained unknown for the last 40 years, due to its small magnetic moment (~0.01 μ_B) and the lack of large enough singles crystals for neutron studies. Interestingly, the M_4 resonance in this material is very sharp and has a Lorentzian-squared profile in energy space, where one normally expects to find a simple Lorentzian. Here, we report on investigations of the M_4 and M_5 resonances of UO₂ using the same energy resolution (0.5eV) of the ID20 magnetic scattering beamline. The M_4 and M_5 resonances of NpO₂ and UO₂ are compared in figure 1. The sharp resonance is only observed at the M_4 edge of Np in NpO₂, UO₂ has the antipicated simple Lorentzian energy profile. The sharper M_4 resonance is therefore not a characteristic of the actinide dioxides and its origin still remains a mystery. Similar measurements, on the small moment heavy fermion compound URu₂Si₂ (~0.02 μ_B), additionally find a simple Lorentzian profile at the uranium M_4 edge. This result eliminates simple small magnetic moment arguements as the origin of the sharp profile in NpO₂. ## References [1] D. Mannix et al. Phys. Rev. B 60 15187 (1999). Figure 1. The RXMS at the M₄ and M₅ resonances of the actinide dioxides UO₂ and NpO₂. Only NpO₂ has a sharp energy profile at the M₄ edge, but a simpler Lorentzian shape at the M₅.