
ESRF	Experiment title: HP powder diffraction study of natural omphacites.	Experiment number: CH-712
Beamline:	Date of experiment:	Date of report:
ID9	from: 17.11.1999 to: 20.11.1999	23.05.00
Shifts:	Local contact(s):	Received at ESRF:
12	M HANFLAND	
Names and	affiliations of applicants (* indicates experimentalists):	
Pavese Aless	sandro Dip. Scienze della Terra-University of Milan	
Diella Valer	ia National Research Council – C.N.R. – Milan	
Levy Davide	ESRF	
Hanfland Mi	chael ESRF	
l		

Report:

Synchrotron X-ray power diffraction experiments at high pressure conditions, from ambient to 13 GPa for a total of 18 points, were performed on the ID9 beamline (λ =0.4532 Å), to investigate the bulk elastic properties of natural *P2/n* omphacites, with quasi-ideal composition, i.e. (Ca_{0.5}Na_{0.5})(Mg_{0.5}Al_{0.5})Si₂O₆.

The monoclinic cell parameters *a*, *b*, *c* [Figure 1] and β were determined as a function of pressure, and their compressibility coefficients are 0.00277(7), 0.00313(8), 0.00292(5) and 0.00116(4) GPa⁻¹, respectively. The third order Birch-Murnaghan equation of state (Birch, 1986) was used to interpolate the experimental P-V data, obtaining K₀ = 116.6(±2.5) GPa and K'₀ = 6.03(±0.60). K₀ was also determinated by means of the axial and angular compressibilities [122.5(±1.7) GPa], and of the finite lagrangian strain theory [121.5(±1.0) GPa] (Catti, 1985). Discrepancies on K₀ are observed with earlier measurements by McCormick et al (1989) on vacancy bearing omphacites, richer than ours of aluminum (K₀=129 and K₀=139 GPa from the quoted authors). Accepted by Physics and Chemistry of Minerals as ''Synchrotron X-ray powder diffraction study of natural P2/n-omphacites at HP conditions'' from Pavese, Diella, Levy, Hanfland.

References Birch F (1986) J Geophys Res, 91, 4949-4954. Catti M (1985) Acta Cryst, A41, 494-500. McCormick TC, Hazen RM, Angel RJ (1989) Am Mineral, 74, 1287-1292.