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Report:
The addition of two equivalents of alkyl lithium to CuCN gives a so-called cyanocuprate reagent,

R2Cu•Li2CN.  These reagents are of substantial interest in organic chemistry because of their high, yet
selective, reactivity.  Thus, addition of cyanocuprates to enone substrates results in rapid, but selective 1,4-
addition (Equation 1). In contrast, the alkyl lithium starting material alone gives 1,2-addition (Equation 2). 
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Although the reactivity of the cyanocuprate reagent was originally attributed to the formation of a
three-coordinate Cu-cyanide complex1-2 (sometimes referred to as a "higher-order" cuprate), a variety of
recent results3-5 have shown that, in fact, the Cu is two-coordinate in this species, and that it is best described
by a structure such as that in (3).  In particular, EXAFS spectra of CuCN + 2RLi show clear evidence only for
Cu-C scattering from the alkyl groups, and XANES spectra show the intense pre-edge transition that is
characteristic of two-coordinate linear Cu(I).5
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Previous work has shown that methyl-trans-cinnamate (the enone substrate shown in Equation 4) reacts
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(Barnhart and Penner-Hahn, unpublished) showed that a spectroscopically identical intermediate is formed
when methyl-trans-cinnamate is added to Me2Cu•Li2CN, as shown in the first line of Equation 4. 
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The static EXAFS and NMR results summarized by the first line of Equation 4 provided a first glimpse
into the mechanism of the reaction.  The present experiments were designed to obtain a better understanding
of the detailed mechanism of this reaction, and in particular to probe the structure of the intermediates
represented by the two arrows in the second line of Equation 4.

Using the stopped-flow XAS equipment on ID-24, time-resolved XAS spectra were measured with 100
ms time resolution for the first 1.5 s of the room-temperature reaction of CuMe2•Li2CN + methyl-trans-
cinnamate, and every 0.9 sec for the first 30 s of the reaction.  The resulting XANES spectra are shown in
Figs. 1 and 2, respectively.
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Figure 1 Series of spectra taken every 100ms
for the first 1.5s of the reaction.

Figure 2 Series of spectra taken every 0.9s for
the first 30s of the reaction.
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of the reaction.  This can be seen by the low amplitude of the 1s→4p transition.  During the first phase of the
reaction, the Cu site changes, but appears to be remain 3-coordinate.  The retention of an approximately 3-
coordinate structure is shown by the lack of change or the1s→4p transition, while the presence of some
structural change is indicated by the increase in the intensity of the intense main edge transtion.  This main
edge transition evolves from a nearly single peak to a pronounced double peak by 1.5 s.  Subsequently
structural evolution involves reformation of a two-coordinate Cu species, as indicated by the increase in the
intensity of the 1s→4p transition for times > 1 s.

Detailed interpretation of these data together with interpretation of the EXAFS data is in progress.
Ultimately, it should be possible to determine the rates of the different reactions and to determine the
structure of the intermediates that are formed during the reaction.  Already it is clear, however, that there exist
at least two different 3-coordinate complexes during the reaction shown in Equation 4.
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