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Report:

The Eu metal is an unusual rare earth, that crystallises in the bcc structure, exhibits a low melting point and a

large atomic radius. All these particularities, different from the other rare earths, are commonly attributed to

the stabilisation of a divalent state, since the 4f shell tends to be half-filled with 7 electrons. Thus, although

europium and gadolinium exhibit the same number of 4f electrons, the ordering temperature is much lower in

europium due to a lower density of state at the Fermi level and a smaller indirect exchange.

These various characteristics make europium a suitable element for fundamental investigation of related

electronic and magnetic properties. Our aim is to combine the Molecular Beam Epitaxy technique, to get high

purity and high quality europium films, with the powerful Resonant X-ray Magnetic Scattering tool. RXMS

permits both to investigate magnetic configurations and to probe the vacant states near the Fermi level that

contribute to the resonant process.

Since no RXMS experiments were previously performed on pure Eu metal, our investigation started with a

quite simple system: a thick Eu film (9700Å). This film was deposited on a single crystal sapphire substrate,

first covered with a niobium buffer layer. RHEED observations during the first stages of growth have shown

an initial hexagonal surface structure that relaxes into the bcc structure: the growth direction is [110] and 3

structural domains rotated by 60° in the (110) plane coexist. The structural coherence length along the growth

direction is close to 680 Å and the mosaïc spread is about 0.7°.

The experiment divided into two parts. First, using RXMS at the Eu L3 edge, we confirmed the magnetic

structure and investigated its thermal evolution. Second, using pure charge scattering at a higher energy

(≈14 keV) for improved resolution, we studied the related magnetostrictive effects. The RXMS measurements

were performed in the σ-π polarization channel, using the (2 2 0) reflection from a Cu analyser crystal, to
eliminate most of the charge background from the substrate and of the fluorescence.



At T=10K for E=6.971 keV, several magnetic satellites

have been measured around the (110), (220) and (310)

charge peaks, presented with small solid circles on the

reciprocal lattice fig.1. They reveal a modulated magnetic

structure whose propagation vector is parallel to the

<100> directions of the cubic lattice, in agreement with

the magnetic phase in bulk Eu. Let us however underline

that no magnetic satellites could be measured along the c*

direction. This could indicate the absence of this magnetic

domain and will have to be related to magnetoelastic

effects: since [001] is the only <100> in-plane direction, it

is no longer equivalent to [100] and [010].
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Fig.1: sketch of the Eu reciprocal lattice. Small circles

correspond to magnetic contributions. The solid ones have

been actually measured.

Figure 2a shows the (1 1 0) charge peak and the (1 1±τ 0) magnetic satellites, in the ordered phase and close

to TN .The thermal evolution on heating of the (1 1−τ 0) magnetic intensity and of the turn angle is given in

figure 2b.
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Fig.2a: K-scans measured around the (110) charge peak, at

10K and at 88.75K in the σ−π channel for E=6.971 keV.
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Fig.2b: Thermal evolution of the integrated intensity of the

(1 1-τ 0) magnetic satellite and of the turn angle

The thermal evolution of the integrated intensity reveals an ordering temperature very close to 89K. The turn

angle of the helical phase slightly increases with temperature, from 49° at 10K to 52° at the ordering

temperature. Both the turn angle and the ordering temperature are similar to bulk values.

At 14 keV, we followed the thermal evolution on heating of the (6 6 0), (7 5 0) and the (5 0 –3) charge peaks.

We observed a broadening in Q-space on approaching the transition, consistent with the tetragonal distortion

that was reported for bulk Eu.

From the peak positions, we deduced an average

(cubic) lattice constant (Fig.3). We attribute the

discrepancies in the calculated parameters to the fact

that (6 6 0) and (7 5 0) are both sensitive only to the

out of plane (a* and b*) 4-fold axes, whereas (5 0 –3) is

sensitive to a* and to the in-plane 4-fold axis c*. The

parameters along a and b, and along c must evolve in

different ways.

In conclusion, RXMS experiments permitted to analyse

both magnetic configurations and magnetoelastic effects

in a Eu film. Further analysis of the lattice constants and

of the line-shape in Q-space will give us a good

knowledge of the magnetoelastic effects, which we

hope to relate to the apparent absence of the magnetic

domain along c*.
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Fig.3: Thermal evolution of the average lattice parameter

deduced from three charge peaks assuming a bcc structure




