ESRF	Experiment title: High-pressure breakdown of Fe ₃ O ₄	Experiment number: HS-1525
Beamline: ID30	Date of experiment : from: 20-04-2001 to: 23-04-2001	Date of report : 31-03-2007
Shifts:	Local contact(s):	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

Lazor Peter*, Shebanova Olga*, Annersten Hans*

Dr. Tristan LE BIHAN

Department of Earth Sciences, Uppsala University, SE-752 36 Uppsala, Sweden

Report:

12

Lazor P., Shebanova O., Annersten H., High-pressure study of stability of magnetite by thermodynamic analysis and synchrotron X-ray diffraction, Journal of Geophysical Research, 109, B05201: 1-16, 2004.

Abstract: Thermodynamic analysis and synchrotron x-ray diffraction experiments aiming at the investigation of stability of magnetite were carried out in the pressure temperature range 0 - 36 GPa and 300 - 800 K, respectively. The thermodynamically predicted breakdown of magnetite to hematite and wüstite was not observed, but the trace amounts of hematite detected in the sample assemblage may signify a presence of nucleation centers of breakdown products, the growth of which is kinetically hindered due to the energetic requirements for the reaction. A number of phase equillibria were considered and evaluated in the Fe-O system. The pressure - temperature stability field for the mixture of oxides Fe₂O₃ + FeO is defined by a triangle with maximum temperature 850 K at 14.6 GPa. At 298 K, the equilibrium pressure for the breakdown of magnetite is 13.3 GPa, while the pressure for the synthesis $FeO + Fe_2O_3 \Leftrightarrow h-Fe_3O_4$ is located between 35 and 47 GPa, depending on the choice of input parameters. The calculations also predict that the h-Fe₃O₄ becomes unstable with respect to h-Fe₂O₃ + FeO at pressures higher than 50 GPa. The 298 K isotherm derived from the compression experiment is in good agreement with results of earlier studies. The 1 confidence ellipsoid shows large negative correlations for the fit parameters K_T , K_0 , and V_0 . The transformation of magnetite to the dense polymorph was observed already at 19 GPa. The Rietveld refinement of the diffraction pattern of h-Fe3O4 is consistent with the CaTi₂O₄-type structure. The values of Gibbs formation energies for the high-pressure polymorphs h-Fe₃O₄ and h-Fe₂O₃ were estimated to be -962 kJ/mol and -610 kJ/mol, respectively. The standard-state entropy of h-Fe₃O₄ is 172.4 J/K/mol.