ESRF	Experiment title: Thermal decomposition of chromium(VI) oxide; high resolution in-situ powder diffraction studies of mixed valence chromium oxides.	Experiment number: 01-01-263
Beamline:	Date of experiment:	Date of report:
	from: 14/9 2001 to: 19/9 2001	7/3 2003
Shifts:	Local contact(s):	Received at ESRF:
15	Hermann Emerich	
Names and affiliations of applicants (* indicates experimentalists):		
*Poul Norby, Deptartment of Chemistry, University of Oslo, N-0315 Oslo, Norway		
*Helmer Fjellvåg, Deptartment of Chemistry, University of Oslo, N-0315 Oslo, Norway		

Report:

CrO₃, chromium(VI) oxide, has a 1-dimensional crystal structure formed by infinite single chains of corner linked CrO₄-tetrahedra. When heated, CrO₃ will decompose through several steps to chromium(III) oxide, Cr₂O₃. The thermal decomposition of CrO₃ has been the topic of many studies, but the decomposition sequence and the structures and stoichiometry of the intermediate mixed valence chromium oxides are still not fully understood. The decomposition is strongly dependent on e.g. pressure, oxygen partial pressure and traces of moisture. Several mixed-valence compounds have been identified in the decomposition sequence. A compound known as Cr₃O₈ was shown by structure determination(1) to have the true composition Cr₈O₂₁. It is triclinic, a = 5.433, b = 6.557, c = 12.117Å, $\alpha = 106.36$, $\beta = 95.73$ and $\gamma = 77.96^{\circ}$ and contains chromium(III), chromate- and tetrachromate groups, and the composition Cr₂O₅(Cr₆O₁₅) has been reported, but no structural information is available. Cr₅O₁₂ was syntesized at high pressure, and the structure has been determined. In Cr₅O₁₂ chromium(III) is connected by chromate groups, and the composition can be given as: Cr(III)₂(Cr(VI)O₄). Thus the transformation sequence observed is:

$$CrO_3 \rightarrow Cr_8O_{21} \rightarrow Cr_6O_{15}(Cr_2O_5) \rightarrow (Cr_5O_{12}) \rightarrow Cr_2O_3.$$

When taking into account the appropriate oxidation states of chromium, the compounds are:

$$Cr(VI)O_3 \rightarrow Cr(III)_2Cr(VI)_6O_{21} \rightarrow Cr(III)_2Cr(VI)_4O_{15} \rightarrow Cr(III)_2Cr(VI)_3O_{12} \rightarrow Cr(III)_2O_3.$$

A systematic change in stoichiometry is observed. A couple of interesting missing stoichiometries are: Cr_7O_{18} ($Cr(III)_2Cr(VI)_5O_{18}$) and Cr_4O_8 ($Cr(III)_2Cr(VI)_2O_8$). Cr_7O_{18} has so far not been observed, but it could exist as a chromium chromate trichromate, $Cr(III)(Cr(VI)O_4)_2(Cr(VI)_3O_{10})$. Cr_4O_8 does exist (CrO_2); not as a mixed valence compound, but as a chromium(IV) oxide.

High resolution powder diffraction was used to follow the thermal decomposition of CrO_3 and Cr_8O_{21} under various reaction conditions, such as different oxygen partial pressures. The aim was to identify new phases in the decomposition sequence, and to resolve the issue concerning the structure of $Cr_6O_{15}(Cr_2O_5)$.

The Figure shows an example of a series of powder diffraction patterns collected during heating of Cr_8O_{21} . The formation of an intermediate phase is clearly visible. During the experiments several different, but closely related, phases with assumed composition close to $Cr_2O_5(Cr_6O_{15})$ were obtained. One of the phases has been indexed based on a triclinic unit cell, a = 6.561, b = 8.401, c = 8.951Å, $\alpha = 99.95$, $\beta = 73.16$ and $\gamma = 89.06^{\circ}$. The structure determination is not yet completed.

1. P. Norby, A. Nørlund Christensen, H. Fjellvåg and M. Nielsen "The crystal structure of Cr₈O₂₁ determined from powder diffraction data. Thermal transformation and magnetic properties of a chromium-chromate-tetrachromate." *J. Solid St. Chem.* **94** (1991) 281.