ESRF	Experiment title: STRUCTURAL ASPECTS OF THE (O-H) DISORDER ON MAGNETIC AND ELECTRONIC PROPERTIES OF <i>TM</i> (OH) ₂ LAYERED COMPOUNDS	Experiment number: HS1838
Beamline:	Date of experiment:	Date of report:
ID30	from: 02.05.02 to: 06.05.02	18.02.04
Shifts: 12	Local contact(s): T. Le Bihan	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists): Moshe P. Pasternak		
Gregory Kh. Rozenberg		
School of Physics and Astronomy, Tel Aviv University, ISRAEL		

Report:

M.P. Pasternak, A.P. Milner, G.Kh. Rozenberg, R.D. Taylor, and R. Jeanloz Pressure Induced Self-Oxidation of Fe(OH)₂, <u>accepted for publication in Phys. Rev. Let</u>.

ABSTRACT

Mössbauer spectroscopy, x-ray diffraction (XRD), and electrical resistance (R(P,T)) studies in Fe(OH)₂ to 40 GPa revealed an unforeseen process by which a gradual Fe²⁺ oxidation takes place, starting at ~8 GPa reaching 70% Fe³⁺-abundance at 40 GPa. Based on XRD and R(P,T) data it is unequivocally concluded that this non-reversible process, Fe²⁺ \rightarrow Fe³⁺ + e⁻, results in Fe²⁺ converting into Fe³⁺ with no structural transition. The "ejected" electrons form a deep band within the Fe(OH)₂ high-pressure electronic-manifold becoming weaklylocalized at P > 50 GPa. This process is attributed to an effective ionization potential created by the pressure-induced orientationally deformed (OH) dipoles and the unusual small binding energy of the valence electron in $Fe^{2+}(OH)_2$.

Typical diffraction patterns illustrating the obtained results are shown in Fig. 1. As can be seen no new structural components are observed to the pressure \sim 30 GPa; the diffraction patterns are that of pure Fe(OH)₂.

Fig. 1. X-ray powder diffraction patterns of $Fe(OH)_2$ at T = 298 K and various pressures. Indexes correspond to the diffraction peaks of the original CdI₂ type structure. Weak peaks corresponding to ruby are marked with (*). Peaks, which appear at ~ 5 GPa in addition to the CdI₂ type structure ones, are marked with (+), and can be accounted for as texture effects and consequent distortion of the original structure. The Ar (111) peak is marked with (#). Positions of the most intense peak of Goethite, or α -FeO(OH), and Lepidocrocite, or γ -FeO(OH), are marked with arrows.

Detailed HP-XRD analyses of several $TM(OH)_2$ (TM= Fe, Co, and Ni) compounds to pressures ~ 80 GPa will be published soon.