ESRF	Experiment title: Crystallization of Ni-Ti thin film Shape Memory Alloy (SMA)	Experiment number: ME - 474	
Beamline:	Date of experiment:	Date of report:	
BM 20	from: 05.02.2003 to: 09.02.2003	01.03.2003	
Shifts:	Local contact(s):	Received at ESRF:	
12	Dr. Norbert Schell	19.07.03	
Names and affiliations of applicants (* indicates experimentalists):			
*Francisco M. Braz Fernandes, *Rui M. S. Martins, *Rui J. C. Silva CENIMAT – Centro de Investigação de Materiais			
Campus da FCT/UNL, 2829-516 MONTE DE CAPARICA, PORTUGAL			

1. Thin films production

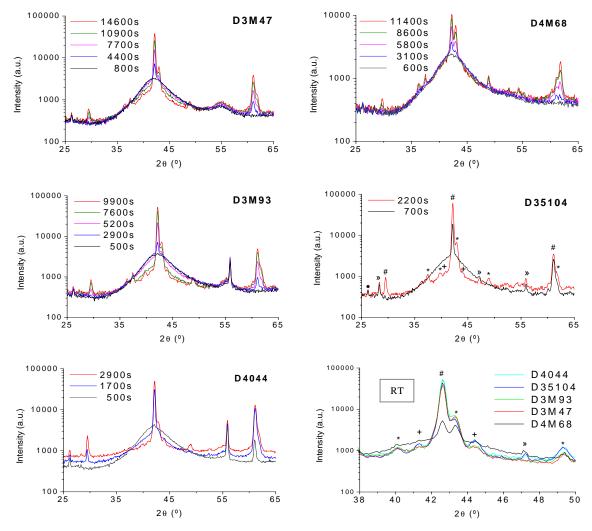
NiTi thin films were deposited on Si(100) wafers using sputtering dc technique. The chemical composition of the target material was 44 wt% Ni – 56 wt% Ti, i.e. 49 at% Ni – 51 at% Ti (60 x 232 x 2 mm). The substrates used for the deposition of the Ni-Ti thin films were (i) Si(100) oxidized wafers and (ii) polysilicon thin films deposited on Si(100) oxidized wafers. The thickness of the sputtered Ni-Ti films ranged from 1.4 μ m to 1.6 μ m (D3: 70 mm, D4: 40 mm; 5.75 W/cm², P_{Ar} = 1 mTorr). The temperature range covered for the crystallization studies was from room temperature to 430°C.

Designation	Position on the sample holder	Substrate/Target distance (mm)
D3M93	a)	70
D3M47	b)	70
D3064	a)	70
D35104	a)	70
D4M64	a)	40
D4M68	b)	40
D4044	a)	40

a) sample located inside the vertical projection of the target on the substrate

b) sample located outside the vertical projection of the target on the substrate (~ 25 mm from the edge)

Fig. 1 - Dc sputtering equipment.


2. GIXRD in situ annealing

Samples of $10x10 \text{ mm}^2$ were cut to be analysed by GIXRD at ROBL. The annealing of the films took place under vacuum (pressures ranging from 4×10^{-8} to 2×10^{-6} mbar). The grazing incidence angle was 1°.

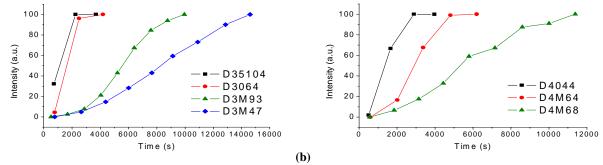

3. Results¹

Fig. 2 shows the diffraction patterns of the NiTi thin films during and after crystallization (RT).

¹ presented at "Materiais 2003" and submitted for publ. in Mat. Sci. For. (*In-situ* GIXRD characterization of the crystalli-zation of Ni-Ti sputtered thin films; R.M.S. Martins, R.J.C. Silva, F.M.Braz Fernandes, L. Pereira, P.R. Gordo, M.J.P. Maneira, N. Schell).

Fig. 2 – GIXRD patterns of dc and rf sputtered films at crystallization temperature and at RT after crystallization (# B2, * Ni_4Ti_3 , + Ni_3Ti_2 , • SiO_2 , » Si).

Fig. 3 – Crystallization evolution represented by the integrated intensity of the (110) austenite peak versus time during annealing at 430° C for the distance target/substrate of (a) 70 mm, (b) 40 mm.

4. Discussion

(a)

From the kinetic results, we observe that the **crystallization is significantly enhanced by:**

- the presence of an intermediate film of polysilicon
- the fact that the sample lies within the limits of the vertical projection of the target on the substrate.

During crystallization, Ni_3Ti_2 and Ni_4Ti_3 precipitate (as it is also reported by other authors). Using the distance target/substrate of 40 mm instead of 70 mm gives:

- no significant change of the kinetics for the depositions on polysilicon
- a significant change for the deposition on the Si(100) wafer (no intermediate polysilicon).