

Report:

Dilithium zirconium hexafluoride, $\mathrm{Li}_{2} \mathrm{ZrF}_{6}(\mathrm{P} \overline{3} 1 \mathrm{~m}, \mathrm{Z}=1)$, is studied at high pressures using synchrotron angle-dispersive x-ray powder diffraction in a diamond anvil cell at room temperature. At atmospheric conditions, it has a structure with all the cations octahedrally coordinated to fluorine atoms. There occurs a fully reversible first-order phase transition above 10 GPa to a new polymorph $(\mathrm{C} 2 / \mathrm{c}, \mathrm{Z}=$ 4), in which the coordination polyhedron of the Zr atoms is a distorted square antiprism, while the Li atoms are in the octahedral coordination. The LiF_{6} octahedra form layers parallel to (100) that are connected by zig-zag chains of the edge-sharing Zr polyhedra running in the [001] direction. The relative change in volumes per one formula unit for both polymorphs is 6% at 11.8 GPa .

Table Structural parameters for $\mathrm{Li}_{2} \mathrm{ZrF}_{6}(\mathrm{C} 2 / \mathrm{c}, \mathrm{Z}=4)$ at $14.8 \mathrm{GPa}-\mathrm{a}=9.651(6) \AA, \mathrm{b}=7.533(8)$ $\AA, \mathrm{c}=4.988(3) \AA, \beta=114.94(4)^{\circ}, \mathrm{V}=328.8(4) \AA^{3}$. Estimated standard deviations are given in parenthesis. The symbols (2x) indicate the multiplicity.

Atom	Site	x	y	z
Li	8 f	0.255(7)	0.536(9)	0.576(15)
Zr	4 e	0.0	0.315(1)	0.25
F1	8 f	0.121(3)	0.233(3)	0.060(6)
F2	8 f	0.395(4)	0.041(3)	0.350(6)
F3	8 f	0.112(2)	0.101(3)	0.480(6)

Selected distances (\AA)

Li_F1	2.16(6)	Li_F1	2.65(7)
Li_F1	$2.19(6)$	Li_F2	$2.01(6)$
Li_F2	$1.74(6)$	Li_F3	$2.09(7)$
Li_F3	$1.76(6)$		

Zr_F1	$1.89(2)$	$(2 \mathrm{x})$
Zr_F2	$2.15(2)$	$(2 \mathrm{x})$
Zr_F2	$2.12(2)$	$(2 \mathrm{x})$
Zr_F3	$2.02(2)$	$(2 \mathrm{x})$

Figure Captions

Figure 1 Selected x-ray powder patterns of $\mathrm{Li}_{2} \mathrm{ZrF}_{6}$ at different conditions with argon as a pressure transmitting medium $(\lambda=0.71998 \AA)$. Reflections due to argon are marked with stars.

Figure 2 Pressure dependence of unit-cell parameters and volumes in $\mathrm{Li}_{2} \mathrm{ZrF}_{6}$. Open and full symbols stand for the $\mathrm{P} \overline{3} 1 \mathrm{~m}(Z=1)$ and $\mathrm{C} 2 / \mathrm{c}(\mathrm{Z}=4)$ polymorphs, respectively. The unit cell volumes of the monoclinic phase are divided by a factor of four. The relative volume change at 11.8 GPa is 6%.

Figure 3 Observed, calculated, and difference x-ray powder patterns for $\mathrm{Li}_{2} \mathrm{ZrF}_{6}(\mathrm{C} 2 / \mathrm{c}, \mathrm{Z}=4)$ at 14.8 GPa as obtained after the final Rietveld refinement $(\lambda=0.71998 \AA)$. Vertical markers indicate the positions of Bragg reflections. The 2θ regions $15.8-16.9^{\circ}$ and $18.35-19.06^{\circ}$, in which two reflections due to argon are observed, were excluded from the Rietveld refinement. Broad features at about $2 \theta=8.9^{\circ}$ and $2 \theta=13.6^{\circ}$ are the traces of the low-pressure phase ($\mathrm{P} \overline{3} 1 \mathrm{~m}, \mathrm{Z}=1$), i.e, the (001) and (101) reflections, respectively.

Figure $4 \quad$ Crystal structure of $\mathrm{Li}_{2} \mathrm{ZrF}_{6}(\mathrm{C} 2 / \mathrm{c}, \mathrm{Z}=4)$ at 14.8 GPa .

Figure 1.

Figure 2.

Figure 3.

Figure 4.

