ESRF	Experiment title: EXAFS and XANES study of Re-based double perovskites.	Experiment number : HS-2458
Beamline: BM29	Date of experiment:from:20-JUL-04to:24-JUL-04	Date of report: 22-JUL-05
Shifts: 9	Local contact(s): Gianlucca Ciatto	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

J. Blasco*, J. García*, G. Subías*, J. Herrero-Martín* and M. C. Sánchez.

Instituto de Ciencia de Materiales de Aragón, CSIC- Universidad de Zaragoza, Departamento de Física de la Materia Condensada, C/ Pedro Cerbuna 12, 50009 Zaragoza.

Report:

A renewed interest has been focused in the last years on the $A_2BB'O_6$ (A being alkaline-earth and B/B' being transition metal) compounds with perovskite structure. The reason is the outstanding magnetic and electronic properties they exhibit as a consequence of the strong interplay between structure, charge and spin ordering.

The electronic and geometrical local structure of Re-based double perovskites, A₂FeReO₆ (A=Ba, Sr, Ca), have been probed by using x-ray absorption spectroscopy at the Fe K- and Re L_{1,2,3}-edges [1]. X-ray absorption spectra were recorded at the BM29 beamline. The measurements were performed in transmission mode on powder samples. The incident and transmitted beams were detected by means of ionization chambers. The beam was monochromatized by a fixed-exit Si(311) double-crystal at both, the Fe K- and the Re L_i-edges. Harmonic rejection was achieved by 50% detuning of the monochromator from the parallel alignment. The energy resolution $\delta E/E$ was estimated to be about 4×10^{-5} and 1×10^{-4} at the Fe K- and Re L_i-edges, respectively. XANES spectra were taken for the Fe K- and Re L_{1,2,3}edges while EXAFS spectra were measured at the Fe K- and Re L₃-edges. Both kinds of spectra were collected at 40 K and at room temperature (~295 K). A Fe foil and a pellet of metallic Re were simultaneously measured for energy calibration. The XANES spectra were normalised to the high energy part of the spectrum (~100 eV beyond the edge) after background subtraction. The EXAFS structural analysis was mainly restricted to the first coordination shell by means of the FEFF 8.10 code and FEFFfit package.

Figure 1(a) shows the Fe K-edge XANES spectra of A_2 FeReO₆ samples. The main traits of these spectra are a strong resonance at the threshold (W), some pre-peak structures at ~15 eV below W (P) and shoulders at intermediate energies (S). The main difference among the samples concerns to the edge position. The calculated edge values are 7125.0, 7125.7 and 7126.0 eV for Ba₂, BaSr and the rest of A_2 FeReO₆ samples, respectively. Therefore, the edge position for the latter samples is consistent with the presence of trivalent Fe whereas a mixed valent Fe (~ +2.75) can be deduced for Ba₂.

Figure 1. XANES spectra of the A₂FeReO₆ and reference samples at the (a) Fe K edge at 40 K and (b) at the Re L₁ edge at room temperature. A₂ being Ba₂ (open circles), BaSr (filled circles), Sr₂ (triangles), CaSr (dotted line), Ca_{3/2}Sr_{1/2} (+), Ca₂ (solid line). The references LaFeO₃ or ReO₃ (chain curve) and FeO or ReO₂ (dashed line) are also included.

The XANES spectra at the Re L₁-edge for these samples are shown in Fig. 1b. The A₂FeReO₆ spectra are composed by a strong resonance (R) above the white line (W_L) and a pre-edge (P_L). The inset of Fig. 1b shows in detail the P_L and insulator samples (Ca₂ and Ca_{3/2}Sr_{1/2}) have the weakest P_L supporting a close relationship between *p*-*d* mixing and metallic behaviour. Comparison between references and A₂FeReO₆ compounds in Fig. 2b reveals an intermediate valence close to 5+ for the Re.

	Fe K-edge			Re L ₃ -edge		
SAMPLE	R _{Fe-0} (Å)	$\sigma^2(A^2)$	R	R _{Re-O} (Å)	$\sigma^2(\AA^2)$	R
Ba_2FeReO_6	2.063(6)	0.003(1)	0.037	1.949(4)	0.003(1)	0.025
$BaSrFeReO_6$	2.026(5)	0.003(1)	0.018	1.943(6)	0.004(1)	0.054
Sr ₂ FeReO ₆	1.993(4)	0.003(1)	0.018	1.942(4)	0.002(1)	0.022
CaSrFeReO ₆	2.003(5)	0.002(1)	0.017	1.949(4)	0.002(1)	0.018
$Ca_{3/2}Sr_{1/2}FeReO_6$	2.007(5)	0.003(1)	0.018	1.950(4)	0.001(1)	0.018
Ca_2FeReO_6	2.010(5)	0.002(1)	0.031	1.951(3)	0.001(1)	0.017

Table 1. Average interatomic distances R[Fe(Re)-O], Debye-Waller factors (σ^2) and reliability factors (R) for the A₂FeReO₆ samples at 40 K. Details of the fits can be found in ref. 1.

The EXAFS spectra were measured at 40 K and at room temperature. Table 1 compares the best fit results for both edges. The analysis was restricted to the 1st coordination shell in both cases. The EXAFS results are consistent with the presence of nominal Re⁵⁺ for all samples and Fe³⁺ for most of the samples. The exceptions would be Ba₂ and BaSr samples. According to Fe-O distances, the formal valence for Ba₂ sample would be +2.7 that nicely agree with XANES spectroscopy. Therefore, Ba strongly affects the charge distribution on the Fe-O-Re sublattice leading to mixed valence Fe^{3-δ} ions. We have explained our results in the frame of recent band models [1].

[1] J. Herrero-Martín, G. Subías, J. Blasco, J. García and M. C. Sánchez J. Phys.: Condens. Matter, in press.