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Report: 

 
This experiment was based on the results of an earlier experiment (ME-944) which had documented the 

principal capability of Fe-K edge XANES to quantify the Fe(II)/Fe(III) ratio and the contribution of different 

Fe-bearing phases to mineral mixtures and soil samples. Now, we applied the prepeak analysis to (i) a soil 

toposequence from a forested watershed in the Fichtelgebirge/Germany constituting a hydrological gradient,  

to (ii) a dissected aggregate from a Eutric Gleysol near Freising/Germany, and (iii) to annually-laminated 

lake sediments. 

 

For organic and mineral horizons of the investigated soil toposequence, an increasing groundwater influence 

was clearly reflected in an increased contribution of Fe(II) species to the total iron content of the respective 

soil samples (Figure 1). Similarly, the concentration of Fe(II) increased from the most oxic soil (Dystric 

Cambisol) to the most anoxic soil (Rheic Histosol) and the contribution of the Fe-oxyhydroxides, as 

calculated by LCF, decreased. Iron oxides are an important soil component in terms of stabilizing soil 

aggregates and reducing erosion losses. In different soils with different water regimes and/or different 

physico-chemical condtions, dissolved Fe species can be transported both between and inside aggregates and 

root channels. Solution or precipitation processes according to changing redox conditions may take place at 

the rims or in the centre of soil aggregates. Several focussed XANES spectra on a profile across the dissected 

aggregate uncover the differences in the contribution of ferrous and ferric iron compounds, depending on the 

specific location and the total Fe content of the investigated spot (Figure 2). Moreover, X-ray microscopy 

revealed that in the studied aggregate the distribution of Mn minerals is uncoupled from the distribution of Fe 

oxides. These results underline how much can still be learned using the unique ability of XANES to analyse 

chemistry as well as mineralogy on a micrometer scale. Another advantage of this technique is its 

applicability to poorly crystalline minerals, which often dominate Fe phases in soils. We expect that by 



 

examining the microscale complexity and inhomogeneity of Fe minerals in different soils XANES can 

greatly contribute to a better understanding of the cycling of Fe and related nutrient elements (e.g., S, P). 

 

The capability of Fe-XANES to distinguish between sulfidic and oxidic Fe minerals was also applied to 

samples of an annually-laminated lake sediment. The undisturbed sediments were cut perpendicular to the 

lamination, so that the sedimentation of certain years was exposed at the surface. Spatially resolved Fe-

XANES show pyrites in close vicinity with Fe-oxides, i.e. within a distance of a few microns. Non-sulfidic 

phases are sometimes enriched in Mn, while in other sediment sections P-rich Fe minerals (Fe-phosphates?) 

occur. Since the pyrites show no signs of oxidation, we must assume a simultaneous deposition of sulfides 

and oxides, i.e. these minerals must have formed at different redox conditions at different waterdepths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Pre-edge peak spectra for (a) organic topsoil horizons and, (b) mineral subsoil horizons of three 

soils in the Fichtelgebirge. The groundwater influence increases from soil A to soil C. Pre-edge peak centroid 

energies are indicated with a solid bar. 
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Figure 2: (a) Aggregate taken from a Gleysol, (b) close-up view taken with an optical microscope, (c) Fe-

XANES pre-edge peak spectra taken at positions 1 to 4, representing mottles (positions 1,2), the “average” 

aggregate interior (position 3), and the edge of the root channel (position  4). Pre-edge peak centroid energies 

are indicated with a solid bar.  
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