ESRF	Experiment title: Anisotropy of CaC6 electron momentum density	Experiment number: HE 2135
Beamline:	Date of experiment:	Date of report:
	from: 3 May to: 9 May 2006	01/09/2006
Shifts:	Local contact(s): Thomas Buslaps	Received at ESRF:
Names and affiliations of experimentalist applicants:		
N. Emery, C. Hérold and P. Lagrange, LCSM, University of Nancy, Fance		
Ch. Bellin and G. Loupias, IMPMC, University of Paris 6, France		

Report

Summary

CaC₆ is a new superconducting Graphite Intercalation Compound (GIC) [1] with a Tc = 11.5K. Superconductivity in GICs was subject of intensive studies during the late 80's and early 90's, due to their quasi-2D structure [2]. 40 years ago, some of GICs have be found superconducting, but at very low temperature, like KC₈ with T_c =0.14K [3]. **CaC**₆ Tc is **almost 2 orders of magnitude larger** than the Tc in the well-known KC₈.

Recent *ab initio* calculations indicate the crucial role played by the charge in the intercalated Ca plane [4, 5]. These calculations [4] point at a BCS behaviour with a moderate electron-phonon coupling. The carriers are mostly electrons in Ca Fermi surface coupled with C atoms perpendicular to the graphene plane phonons, leading to **superconductivity of Ca intercalant planes**. The role played by the intercalant non-complete ionization is pointed out by this **new scenario** and even **higher** T_c seem to be possible.

In order to understand the electronic density of CaC_6 (electron transfer from Ca atom to graphene layer and distortion of the graphite host electronic density, we have performed Compton measurements on CaC₆ at ESRF, on ID 15B, using the high resolution spectrometer.

We have measured 2 Directional Compton profiles of CaC_6 (with *K* respectively parallel and perpendicular to c-axis) and 1 Directional Compton profile of pristine HOPG, with the scattering vector *K* parallel to c-axis.

Experimental details

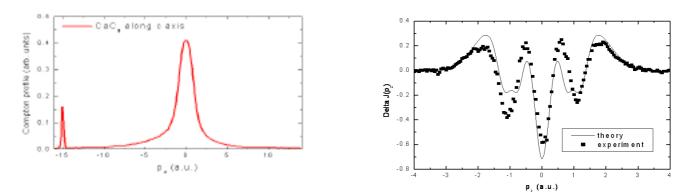
- The incident energy was 56,28 keV and the diffusion angle equal to 172° , leading to a Compton tranfer of 10.18 keV. Raman departures (K of Ca (4038 eV, i.e. - 9 a.u) and C (284 eV i.e. -14.6 a.u.) are far from the momentum range of interest, surronding q=0 a.u.

- The beam was focused on the sample with a focus size of 0.3 mm horizontal. In the vertical plane, we have used 6 mm of beam on our bulk intercalated sample.

To achieve the same experimental conditions for the 2 directional measurements, we needed a sample with a square section (containing the c-axis). We have succeeded in synthesizing large size CaC_6 **bulk samples**, from highly oriented pyrolytic graphite (HOPG) [1]. The resulting compound is made of randomly oriented crystallites in the planes perpendicular to the **c**-axis axis (i.e. in a graphite plane) while they are highly oriented along their *c*-axis, allowing us to define its angle (0 or /2) with the scattering vector *K*. The sample

was constituted of 2 plaques, perpendicular to the c-axis, 400μ m thick, 0.8 mm large and 7 mm high, in order to obtain a square section (0.8 x 0.8 mm2) for our sample of 7 mm high. One can notice the sample thickness is limited to achieve the intercalation down to the sample core.

- These GIC samples are reactive with air and have to be kept in dry argon all the time. The experiments have been performed on a celled Lindman tube. For comparaison, HOPG sample was positionned in a same Lindman tube.


Experimental Results

Data:

- We have reached a resolution of 0.19 a.u.of measured profile, at the Compton peak.

- We have obtained three measured profiles of high quality due, in particula, to a high statistic at Compton peak: with K// graphene c-axis: up to 625.000 counts for CaC6,

with *K* in graphene **plane :** up to 900.000 counts for CaC6 , and up to 1.000.000 counts for graphite An experimental profile, as well as the anistropy obtained by the difference between the two directionnal profiles raw data, obtained on CaC_6 , are shown below. One can notice the good symetry, around q=0 a. u., of the signals.

Anisotropy:

The anisotropy of measured Directional Compton profiles of CaC_6 is compared to the calculated anisotropy, using **new** *ab initio* **calculations** [4]. One can notice that the features of measured and calculated anisotropies present a good overall agreement.

Difference between CaC_6 and graphite Directional Compton profiles, measured with the same direction of the scattering vector K.

We have found that each directional measured differenceprofile is narrower than the calculated one, supporting a **larger delocalisation of conduction electrons in CaC**₆ than expected by the theory. The comparison with theory is still in progress (*very recent experimental results obtained in* May 2006). In such a study, we will be soon able to evaluate the contributions of both the electron conduction profile and the valence profile **distortion** (as we have already done for alkali intercalated graphite). In particular, we wish to elucidate the Ca electron hybridization with the graphene electrons, and the crucial role played by the **charge in the intercalated Ca plane**, due to a partial ionization of Ca atoms, as predicted by the different *ab initio* calculations.

- [2] R. A. Jishi and M. S. Dresselhaus, Phys. Rev. B 45, 12 465 (1992).
- [3] Y. Koike, S-I Tanuma, H. Suematsu and K. Higuchi, J. Phys. Chem. Solids, 41 1111 (1980)
- [4] M. Calandra and F. Mauri, Phys. Rev. Lett. 95, 237002 (2005),
- [5] G. Csnayi et al., Nature Physics 1 (2005)

^[1] N. Emery, C. Hérold, M. d'Astuto, V. Garcia, Ch. Bellin, J.F. Marêché, P. Lagrange and G. Loupias, Phys. Rev. Lett. **95**, 87003 (2005), selected for August 29, 2005, issue of Virtual J. of Nanoscale Science & Technology and for comments in Physics World magazine.