Se(IV) reduction by FeS₂ and FeS solid phase reaction products

Bruggeman, C.; Breynaert, E.; Maes, A

Katholieke Universiteit Leuven, Laboratory for Colloid Chemistry, Kasteelpark Arenberg 23, B-3001 Leuven, Belgium

Reference Compounds

Se⁰, amorphous : SeO₃⁻² reduction with Na-ascorbate

- Se⁰, crystalline : hydrothermal transformation of Se⁰, am at 90 °C
 - : commercially available (Alfa Aesar)

HSeO₃,aq : 100 mM NaSeO₃ at pH 5.0

XRD, SEM, XAS analysis

FeSe

2.5

2.0

1.5

1.0

0.5

Batch reduction of SeO₃²⁻ with FeS₂ and FeS

- Commercial FeS_2 and FeS crushed in agate ball-mill under N2 atmosphere and sieved to pass a 100 μm cut-off.
- Part of 100 μm FeS₂ further crushed to < 10 μm
- Aliquots of the solid phase batches (FeS₂ < 100 μ m, FeS₂ < 10 μ m, FeS < 100 μ m) subjected to a HCI-type pretreatment
- Pretreatment :
 - two washing steps (N₂ atmosphere) using 1 M HCI
 - rinsing with acetone
 drying under N2-flow.

Sample	Description	Solid/Liquid	[Se] _{ini} (M)	[Se] _{out} (M)	[Se] _s (mol/kg)	pН
1	FeS ₂ < 100 μm NPT	100 g·l ⁻¹	6.10×10 ⁻³	2.39×10 ⁻³	3.81×10 ⁻²	6.31
2	FeS₂ < 100 μm PT	100 g⋅l ⁻¹	6.08×10 ⁻³	4.48×10 ⁻³	1.63×10 ⁻²	6.52
3	FeS ₂ < 10 μm NPT	100 g·l ⁻¹	6.10×10 ⁻³	4.80×10 ⁻⁵	6.11×10 ⁻²	7.80
4	FeS ₂ < 10 μm PT	100 g⋅l ⁻¹	6.10×10 ⁻³	8.63×10 ⁻⁴	5.25×10 ⁻²	7.42
5	FeS₂ < 10 μm NPT	100 g·†1	6.14×10 ⁻³	9.04×10 ⁻⁴	5.25×10 ⁻²	8.21
6	FeS ₂ < 10 μm PT	100 g·ŀ¹	6.13x10 ⁻³	2.56×10⁻³	3.61×10-2	8.28
7	FeS₂ < 10 μm NPT	100 g·t ⁻¹	6.11×10 ⁻³	3.40×10⁻⁴	5.88×10 ⁻²	7.42
8	FeS ₂ < 10 μm PT	100 g·ŀ¹	6.11×10 ⁻³	1.53×10⁻³	4.63×10-2	7.23
9	FeS < 100 μm NPT	100 g·l ⁻¹	6.08×10 ⁻³	< 10 ⁻⁶	> 6.10×10 ⁻²	7.89
10	FeS < 100 μm PT	100 g·l ⁻¹	6.07×10 ⁻³	< 10 ⁻⁶	> 6.68×10 ⁻² mol/kg	7.86

PT and NPT: samples pretreated and not pretreated with 1M HCI after crushing $[Se]_{in}$ and $[Se]_{out}$: initial and final supernatant Se concentration

Samples were equilibrated for 3 weeks, except for samples 5 to 8 equilibrated for 12 days before analysis.

increasing FeS2 particle size

decreasing equilibration time increasing pH

pretreatment with HCI

increasing Se supernatant concentration

XAS details

- Batch samples 3,4, 9,10
- Centrifugation 2h, 30000 g
- Pellets transferred in glovebox to 2 ml XAS sample holders
- DUBBLE beamline (ESRF)
- Se K-edge (12.658 keV), fluorescence mode, solid state 9-elem. Ge detector

First shell Se-Se Se(IV) + FeS₂ S₀² Ν R (Å) σ² (Ų) F $\Delta E_0 (eV)$ ŃPT 1.00 1.80 2.35 0.0059 7.84 24.2% Se(IV) + FeS₂ S₀² Ν R (Å) σ² (Ų) $\Delta E_0 (eV)$ F PT 1.00 1.74 2.35 0.0064 8.83 38.7% First shell Se-Fe Se(IV) + FeS S₀² Ν R (Å) F σ² (Å²) $\Delta E_{0} (eV)$ NPT 1.00 2.08 2.41 0.0056 6.52 29.5% $\Delta \mathbf{E}_{0}$ (eV) Se(IV) + FeS S₀² Ν R (Å) σ² (Ų) F 1.00 1.74 2.43 0.0042 7.21 30.0%

Conclusions

- + FeS_x redox controlling phases for Se(IV) \rightarrow reduction within 3 weeks
- FeS and FeS₂ exhibit different redox behaviour FeS₂ : Se(IV) → Se(0)
- $F_{2} = S_{2} : S_{2}(W) \rightarrow S_{2}(W)$
- FeS : Se(IV) \rightarrow FeSe

XAS results on samples 3,4,9,10