European Synchrotron Radiation Facility

INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

Experiment Report Form

ESRF	Experiment title: Stability of chlorinated RuO2(110) model catalyst in the Sumitomo Process	Experiment number: SI-1667
Beamline: ID03	Date of experiment: from: 27.8.2008 to:02.9.2008	Date of report : 22.2.2010
Shifts: 18	Local contact(s): Dr. Olivier Balmes	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists)		

Names and affiliations of applicants (* indicates experimentalists):

Stefan Zweidinger* *Physikalisch-Chemisches Institut, Justus Liebig University Giessen, Germany*; Dr. Olivier Balmes* LOCAL CONTACT (ID03)

Prof. Dr. Edvin Lundgren* Dept. of Synchrotron Radiation Research, University of Lund, Sweden

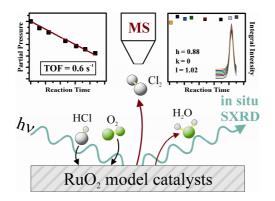
Prof. Dr. Herbert Over* Physikalisch-Chemisches Institut, Justus Liebig University Giessen, Germany

Two beam times were required for the successful experiment: SI-1667 and SI-1944

submitted to Journal of Catalysis: Paper has been accepted on 16.2.2010.

In-situ Studies of the Oxidation of HCl over RuO₂ Model Catalysts:

Stability and Reactivity


S. Zweidinger^{a)}, J. P. Hofmann^{a)}, O. Balmes^{b)}, E. Lundgren^{c)}, and H. Over^{a)*}

Abstract

Structure-activity experiments were performed for the HCl oxidation reaction (Deacon-like process) over RuO₂ model catalysts – chlorinated RuO₂(110) and RuO₂(100) - applying in-situ surfaces x-ray diffraction (SXRD) combined with on-line mass spectrometry. The studied model catalysts turned out to be long-term stable under reaction conditions with gas feed ratios $p(HCl):p(O_2)$ ranging from 1:4 to 4:1 in the mbar pressure regime and temperatures as high as 685 K. Even pure HCl exposure in the mbar regime was not able to reduce RuO₂ below 600 K; above 650 K chemical reduction of the oxide sets in. Under strongly oxidizing reaction conditions the (surface) oxides grow slowly in thickness. On-line reactivity experiments of both types of model catalysts in a batch reactor yield a mean turn-over frequency (TOF) of 0.6 Cl₂ molecules per second and active site for the HCl oxidation at 650 K and initial partial pressures of p(HCl) = 2 mbar and $p(O_2) = 0.5$ mbar. The HCl-oxidation over RuO₂ is therefore considered to be structure insensitive.

Graphical Abstract: Graphical Abstract

In-situ surface x-ray diffraction reveals that RuO_2 -model catalysts are long-term stable for the HCl oxidation reaction by oxygen with a mean TOF of 0.6 Cl₂/s using a batch reactor.

