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Report:

One of the main aims of research on semiconductor guomrdots is to create electronically coupled systems
with tunable electron wave function overlap. Such sgstevith artificially created electronic band structures
will be useful for nanophotonic devices (solid state sesirand detectors for specific wavelengths). Using
prepatterned Si substrates the growth of two-dimensparadic arrangements of SiGe islands is by now a
technique, which is mastered by several laborato8esfar patterns with periodicities in the range between
200 nm and Jum were achieved by optical or e-beam lithography andesuiesit reactive etching ion tech-
niques [1]. The distribution of elastic strains in suateé-dimensional arrays of SiGe quantum dots has been
investigated in detail by high-resolution synchrotroray-diffraction and strain simulation [2]. These sysem
however, do not exhibit the wave-function overlaptlsat their electronic and optical properties are f les
importance.

For periodicities below 100 nm another technique was emglogamely extreme ultra-violet interference
lithography (EUV-IL) at a wavelength &= 13.5 nm using diffractive optics for fast exposure. Using t
approach, Si (001) templates with perfect periodicity dowkese than 30 nm have been realized at a dedi-
cated beamline of the Swiss Light Source in Viligen [Bh these substrates, two- and three- dimensionally
ordered SiGe quantum dot crystals with the so far srhajieentum dot sizes and periods both in lateral and
vertical directions have been grown by molecular bepitaxy [4]. On the prepatterned Si substrates Ge is
deposited which forms {105} facetted islands in the 2D pitrgyeanent. These islands are capped with a Si
layer, on top of which few monolayers of Ge are dépdsand coalesce into islands. Typically 10 periods of
SiGe islands separated by Si spacer layers are growere@dtthe ordering of the SiGe quantum dots in the
first layer is imposed by the periodically patternedUbissrate, after capping with Si, in the subsequent layers
the strain fields of the buried quantum dots are used to treéslands three-dimensionally.

The strain and morphology analysis of short-periodieghtimensional quantum dot arrays with wave-
function overlap has been performed during the reported imgyerfor the first time. We have investigated
two SiGe quantum dot samples: sample U047 consisted in a Eygl of nominally pure Ge quantum dots
fabricated onto a lithographically patterned Si(001) bu#fger, the dots created a periodic square array with
the lateral period of 70 nm; sample U048 was a Ge/Si doilayeitwith 10 Ge/Si bilayers, thickness of the Si
spacer layers was 6 nm and the lateral period of the esgadtierning of the Si buffer was 70 nm. The size of
the patterned area of the buffer surface was 100xh#0 Figure 1 shows AFM pictures of the surface of



both samples, above the patterned area; the perfeatiioéyi of the dot arrays is obvious. From the figure it
also follows that the size homogeneity of the dotraves with the number of multilayer periods; the dots in
sample U048 are much more uniform than in sample U047.

Fig. 1 AFM pictures of the patterned areas of
samples U047 (left) and U048 (right)

We have carried out a series of diffraction measuresnging the photon energy of 8 keV. The primary beam
was vertically focused by a bent multilayer mirrore tinal size of the primary beam of 40x@@n” was
achieved by a cross-slit close to the sample. Theadi#fd intensity has been detected by a two-dimensional
CCD detector placed in the distance of about 70 cm frensample. The optimum sample position was found
by a scan of the sample across the primary beameaatr sample we have measured two three-dimensional
(3D) reciprocal-space distributions of diffracted intgnatound the reciprocal latttice points 004 (symmetric
diffraction) and 224 (asymmetric diffraction, grazing exithe 3D intensity maps have been collected in the
omega/2theta scanning mode, i.e., by a simultaneousorotaitthe sample and the detector arm, the latter
with the double angular velocity.

Each 3D map contains approx. 1000x1000x1000 pixels, we have traedfdhe measured intensity to
reciprocal space, wherg andq, axes are parallel to the sample surface, the diinactectorh (004 or 224)

lies in the verticaty,q, plane.

As a representative example, we present in Fig. 2 thieroeal-space distributions of the intensity diffracted
from samples U047 and U048 in diffractibr= 004.

g, (1/m)

intensity (arb. units)

Fig. 2 Intensity distributions in theqy
plane parallel to the sample surface (
and the linear scans alomg through th
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of samples U047 (upper row) and Ul
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are caused by the beam stop inse
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frames.
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The horizontal intensity maps (the left column) eitHaéteral satellites; due to the ideal lateral peritbgiof

the dots the widths of the satellites are determindygdhynthe resolution function of the experimental spt-
The panels in nthe right column of Fig. 2 depict the wakti-scans extracted from the 3D intensity map,
crossing the lateral satellites denoted 1, 2 and 3. Ircdlse of the multilayer sample U048, the vertical
satellites are visible, stemming from the verticalquécity of the 3D dot array.



Recently, we are dealing with the simulation of thei@@nsity map based on kinematical approximation and
finite-element simulation of the strain field. We egp® obtain a detailed information on the shape acal lo
chemical composition in the quantum dots; these dataewdble us to calculate theoretically the wave

functions of electrons and holes confined in the re&chiSi (surrounding the dots) and in the dots and their
overlap.
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