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With the excellent ratio of strength to density, magnesium and its alloy are attracting increasing attention in
transportation industry. Recent work has highlighted the fact that deformation twinning in magnesium plays
an important role in the relaxation that occurs during unloading. In this experiment, we tested four groups of
magnesium alloy specimens with the same composition of AZ31 but different microstructure and history in
heat treatment. For each group, three loading-unloading processes were employed respectively. Two-dimen-
sional diffraction patterns were taken in-situ during the mechanical testing process. According to the experi-
mental dataset, three aspects were analyzed.

Changes of lattice parameters with compression process

After azimuthal integration of the Debye-Scherrer rings, the change of lattice parameter for basal / pyramid-
al / prismatic planes were plotted in comparison with the loading process in fig.1. In this integrated represent-
ation, the prismatic plane (00.2) was affected by mechanical deformation much more than basal and pyramid-
al planes. Partly, this can be attributed to texture and further data evaluation needs to be done.
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Fig. 1 Lattice parameters variation with loading-unloading process



Lattice strain variation along different directions

As the hcp lattice structure of magnesium alloy invokes anisotropic reaction to the mechanic stress, it is
essential to work out the change of peak width along different directions. For example, the breath
corresponding to the basal plane (00.2) changes during deformation in a peculiar manner. In Fig. 2, along the
stress direction, the width of (00.2) plane increases rapidly with applied load and then drops afterwards.
However, this strange drop does not re-appear on re-loading so it can be ascribed to the initial yielding
behavior. It is also not present in the data for (00.2) normal inclined 30 and 40 deg. to the stress axis so there is a
texture effect. From the original diffraction patterns, the initial anisotropic distribution was pretty strong, which
does not allow us to compare the intensity changes along two perpendicular directions.
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Fig. 2 Lattice parameters variation along different direction



Mosaic spread vs. load

Figure 3 shows the observed reflections in color scale as a function of azimuthal angle and time. Starting
with a few sharp reflections they spread azimuthally, which can be expressed in mosaic spread by the cre-
ation of subgrain structures. Ongoing detailed studies show orientation dependence and grain rotation.
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Fig. 3 Mosaic spread of subgrains
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