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Report:

The monoclinic Ba,CuSi,O; (s.g. C2/c) is the archetype form for Ba,ZSi,O; melilite-related compounds.'"! Other
silicates with this structure include B32COSi207,[2] BaZZnSi207,[3] and BazMgSizO7.[4] The synthetic analogues of these
materials have attracted considerable interest in different technological fields: e.g. ceramics, glasses, luminescent
materials, low-dimensional magnets, etc. Suggested as structures that should not crystallize with a tetragonal melilite-
type structure,”™ the above listed Mg, Co, and Cu melilite-related compounds were also solved in the P-42,m space
group: BazMgSiQO%[é] Ba,C0Si,05,” and Ba,CuSi,0,,® single crystals were successfully refined as melilite-type
compounds. Although with the same stoichiometry (Ba,ZSi,07), the monoclinic and tetragonal polymorphs exhibit
substantial differences. Similarly to the extensively studied melilite-type structures, the monoclinic polymorphs consist
of Si,07 dimers connected by ZO, tetrahedra to form tetrahedral sheets parallel to the ac plane, instead of the ab plane
in the P-42,m structures. The first major difference concerns the coordination polyhedron of the barium cation, that in
the tetragonal feature is a distorted square antiprism with "4 + 4" ligands, whereas in the monoclinic form it is an
alternation of "5 + 3" and "3 + 5" ligand configuration (Fig. 1). However, the main difference is in the arrangement of
the tetrahedral sheet topology (Fig. 1): there are only five-membered rings of tetrahedra in the tetragonal form, while
four- and six-membered rings are present in the monoclinic structure. The change in the tetrahedral sheet arrangement
promotes a new setting of the Si,0; dimers laying in the same layer: in the melilite-type dimers are alternatively
disposed along (110) and (-110), whereas in the melilite-related compounds all the dimers are arranged along (-101).

In the last decade, many studies were dedicated to assess the high- and low-temperature behavior of melilite-type
structures, especially to interpret and solve the phase transition from an incommensurately modulated (IC) to a normal
(N) crystal structure occurring in melilite-type compounds with calcium occupying the eight-fold coordinated site.”'®



On the other hand, few works have been devoted to understand the high-pressure response of melilite structures,”'”"”!

and no studies have been done about melilite-related compounds at non-ambient conditions. For these reasons the
structural variations of synthetic Sr,..Ba,MgSi,O; (0 < x < 2) have been studied as a function of composition, pressure
and temperature.”” ' A topological change from the tetragonal (melilite-type) to the monoclinic (melilite-related)
structure along the join Sr,MgSi,07 (s.g. P-42,m) — Ba,MgSi,07 (s.g. C2/c) occurs with Ba > 1.6 apfu. The asymmetric
ligand arrangement (5+3) in the monoclinic structure, compared to the tetragonal configuration (4+4), provides a more
favourable coordination to large Ba atoms in the cubic site and helps to clarify the dichotomy existing for Ba,ZSi,0; (Z
= Mg, Co, Cu) compounds, which have been reported in both the C2/c (solid state synthesis) and the P-42,m
(crystallization from melt) crystal symmetry. Further insights on the relationships between the two different
polymorphs of Ba,MgSi,O; were achieved by investigating the in situ high pressure and high temperature behaviour of
these systems. The high pressure experiments, performed at ID27 of ESRF (France) up to ~11 GPa, allowed to
calculate the elastic moduli for the Sr melilite-type end-member and for the Ba monoclinic polymorph (Sr,MgSi,O5:
K =107, K,—, = 121, and K. = 84 GPa; m-Ba,MgSi,07: Ky = 85, K, = 96, K, = 72, and K. = 117 GPa) and compare
them to those reported in the literature for Ca-dkermanite. The results suggest that, although the tetragonal structure is
stiffer on the whole, the compressibility of the Ba polyhedron is significantly lower in the monoclinic form. The high-
temperature study of m-Ba,MgSi,0; was carried out up to 1273 K. The measured thermal expansion coefficients for
the unit cell edges and volume are a, = 8.7 x 10°K", 0, =11.0x 10° K", 0. =85 x 10° K", and a0y =31.1 x 10° K,
respectively. This reveals an anisotropic expansion behaviour characterized by a, = a. < a,. High-temperature and
high-pressure data together define the well-known "inverse relationship" for both the unit cell parameters and the (c/a)
axial ratio as a function of the molar volume. The combination of the high temperature/high pressure trend with the
changes of the 7/X dimensional misfit between the tetrahedral layers (7) and the X interlayer, as a function of
composition, suggests that the -Ba,MgSi,O; polymorph might be a metastable phase favoured by high pressure
conditions (Fig. 2).

The obtained results have been reported in the following two works: "The inverse high temperature/high pressure
relationship in the monoclinic Ba;MgSi,0; melilite-related structure" written by M. Ardit, C. Zanelli, M. Dondi and G.
Cruciani, in press to the Periodico di Mineralogia 79; and "Melilite-type and melilite-related compounds: structural
variations along the join Sr;.,.BaMgSi,O;, (0 <x < 2) and high-pressure behaviour of the two end-members" written by
M. Ardit, G. Cruciani and M. Dondi, submitted to the Physics and Chemistry of Minerals.
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Fig 1. Eight-coordinated X cation in melilite-type (A) and melilite- related (B) Fig. 2 (c/a)" ratio as a function of the T/X ratio (see text for explanation). Grey
compounds, and layer topologies along [001] for melilite-type (C) and along filled symbol refers to the structure studied in this work. Empty symbols and
[010] for melilite-related (D) structures. The different arrangement of the Si2O7 | labels are as follows: [Ca-ak] = CazMgSi207;1*%! [Sr-ak] = Sr2MgSi207 and
dimers for the two topologies are given by highlighted Si- Si bonds. [Baw6Sro.4-8k] = (Baw.6Sro.4)MgSi207;21 [Ba-ak] = BazMgSi»O7.e!
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