ESRF	Experiment title: New way of band mapping of NiO using resonant in- elastic x-ray scattering	Experiment number: HE-3310
Beamline: ID16	Date of experiment: from: 27-Jan-2010 to: 02-Feb-2010	Date of report: 21-Sep-2010
Shifts: 18	Local contact(s): Simo Huotari	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists): Simo Huotari*, Laura Simonelli* ID16, ESRF		

Report:

The aim of the experiment was to study the crystal field excitation spectra of NiO using high-resolution RIXS at the Ni K edge, as a function of transferred crystal momentum. The idea was to confirm **k**-dependence of the RIXS cross section and its use as a novel tool as a unoccupied-band mapping.

The experiment was done at the beamline ID16. The incident beam from three consecutive undulators was monochromatised by a combination of a cryogenically cooled double-crystal Si(111) premonochromator and a Si(444) channel-cut postmonochromator; the resulting incident bandwidth was 80 meV. The beam was focused into a spot size of $35 \times 100 \ \mu m$ (V×H) on the sample, which was a cuboid-shaped single crystal of NiO. The spectrometer was based on a vertical Rowland circle with a spherically shaped but diced Si(551), curvature radius R = 1 m. The photon energy was 8.3 keV, corresponding to the Ni K edge.

The experimental technique was resonant inelastic x-ray scattering (RIXS), in which the energy-loss (energy transfer value denoted as E) spectra of valence-electron excitations are measured as a function of incident-photon energy E_1 . Thus the spectra depend on both E_1 and E, represented in two-dimensional RIXS plane.

The purpose of this experiment was to study the reduced-wave-vector (\mathbf{k}) dependence of the RIXS plane in NiO. The possibility for this Bloch wave vector dependent RIXS [1] in NiO is offered by the very localized and well-separated nature of different excitation channels that probe different final states, which in turn depend on the band structure. The measurements were done by tuning the incident-photon energy E_1 around the nearly-quadrupolar pre-edge (around 8.332 eV) of the Ni K absorption edge, shown in Fig. 1a. We used the $\mathbf{G} = \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}$ reciprocal space vector as the zone center. This allowed us to work close to 90° scattering angle, minimizing nonresonant quasielastic scattering. The RIXS maps of NiO in the d-d excitation region have typically three discernible peaks, which we label A,B, and C, at E = 1 eV, 1.6 eV, and 3 eV, respectively. In NiO in the D4h symmetry the possible intermediate states with $3d^9$ configuration are of a_1 and b_1 symmetries. We have noted [2] that it is more probable for the peak A to be originated from the a_1 state, and for peak B from the b_1 state. By observing the E_1 -dependence of the peaks A and B, it becomes possible to infer the relative splitting of the unoccupied a_1 and b_1 states as a function of k (Fig.1 right panel). Further analysis and theoretical calculations are currently being done, and a manuscript is under preparation.

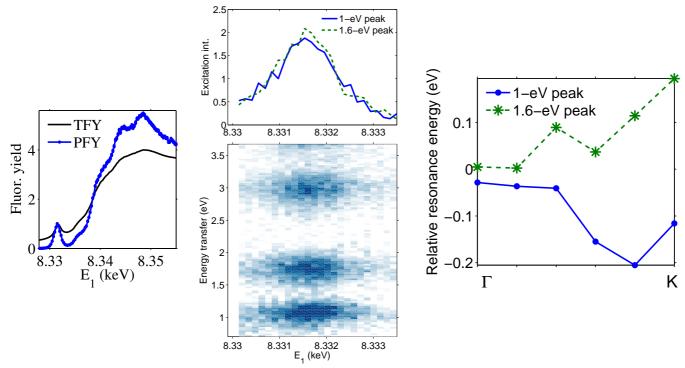


Figure 1. Left: X-ray absorption spectra of NiO measured with two techniques, total fluorescence yield (TFY) and partial fluorescence yield (PFY). The experiment concentrates on the prepeak at 8.332 keV. Middle: The RIXS map at the Γ point with the incident-energy dependence of the three d-d excitations. Right: relative peak resonances of the 1-eV and 1.6-eV peaks.

- [1] H. Enkisch *et al.*, Phys. Rev. B 60, 8624 (1999)
- [2] S. Huotari *et al.*, Orbital energies of NiO in high pressure to up 55 GPa, manuscript in preparation; ESRF experiment HE-2878.