ESRF	Experiment title: Phonon confinement and anisotropy in Te bearing thermoelectric nanowires	Experiment number: HE-3329
Beamline:	Date of Experiment:	Date of Report:
ID22N	from: 03/02/2010 to: 03/09/2010	October 29, 2010
Shifts:	Local contact(s):	Received at ESRF:
21	Dr. Ilia Sergueev	

Names and affiliations of applicants (*indicates experimentalists):

H.-C. Wille^{1,*}, R. Hermann^{2,3*}, I. Sergueev^{4,*}, A. Möchel^{2,3*}, T. Claudio-Weber^{2,3*}, D. Bessas^{2,3*}, Yu.V. Shvyd'ko^{5*}

¹ Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, D-22761 Hamburg, Germany

- ² IFF, JCNS und JARA-FIT, Forschungszentrum Jülich GmbH, Jülich, Germany
- ³ Faculty of Sciences, Université of Liège, Belgium
- ⁴ European Synchrotron Radiation Facility ESRF, F-38043 Grenoble Cedex, France
- ⁵ Argonne National Laboratory, Advanced Photon Source, Argonne, Illinois 60439, USA

Report:

During experiment HE3329 we carried out nuclear inelastic scattering (NIS) studies on ¹²⁵Te bearing thermoelectric materials at 35.493 keV. The studies were carried out using a sapphire Bragg backscattering monochromator [1] using the $(9 \ 1 \ \overline{10} \ 68)$ reflection in Al_2O_3 . The energy resolution in this experiments has been drastically improved from 6.6 meV obtained in the first experiment[1] to currently 1.2 meV [2]. After configuring the spectrometer using a sample of elemental ¹²⁵Te, we collected the Te element specific phonon spectra of $Bi_2^{125}Te_3$ bulk material and of $Bi_x^{125}Te_y$ nanowires by NIS. The polycristalline nanowire sample was prepared by electrochemistry and grown in an alumina matrix, with approximately 50 nm wire diameter and 2 μ m; the stoichiometry was however not exactly controlled; the overgrow, see Fig. 1, was removed mechanically prior to the measurements. The use of the alumina template assured strict orientation of the wires. The phonon spectra of the nanowires were acquired in two different orientations: parallel and perpendicular to the impinging x-ray beam respectively, as indicated in Fig. 1. The spectra of the nuclear forward scattered (NFS) and the nuclear inelastic scattered intensity of the Bi₂Te₃ nanowires oriented parallel and perpendicular to the incoming beam respectively are shown in Fig. 2. From the NIS spectra we extracted the vibrational density of states (see Fig.3) and the speed of sound projected for the phonons with the polarization parallel and perpendicular to the nanowires. The speed of the sound for the phonons polarized parallel to the nanowires is found to be 8% smaller than for the perpendicular polarization. Further measurements are currently carried out in order to characterize the crystallinity and composition of the sample in order to compare the data with the data obtained on bulk $Bi_2^{125}Te_3$ (not shown).

Fig. 1: SEM view of the nanowire template (courtesy W. Töllner, U Hamburg)

Fig. 2: NIS spectra Bi_2Te_3 nanowires oriented parallel and perpendicular to the incoming beam respectively, and the intrumental resolution function from the NFS signal. The sample temperature is ~ 25 K.

Fig. 3: Left: The vibrational density of states (VDOS) of Bi_2Te_3 nanowires oriented parallel and perpendicular to the incoming beam respectively. Note the different energy dependance at low energies. Right: The reduced VDOS g(E)/E² emphasizes the difference in the Debye level. The lines are guides to the eye.

References

- [1] H.-C. Wille et al., Europhys. Lett. 91 (2010) 62001
- [2] I. Sergueev et al., submitted to J. Synch. Radiation (July 2010)