Experimental Report 25-02-813

The exotic polymorph ε -Fe₂O₃ exhibits a polar ferrimagnetic structure with T_c around 500 K. It presents a huge coercivity at RT and is isomorphous to the reference multiferroic GaFeO₃, which exhibits gigantic optical magnetoelectric effects albeit with a lower T_c around 210 K. The recent stabilization of ε -Fe₂O₃ thin films epitaxially grown on SrTiO₃ (111) by PLD technique offers the unique opportunity to study the structural properties of this system at a nearly "single crystal" level. Structural changes coupled to high and low temperature magnetic transitions were previously detected in - ε -Fe₂O₃ phase stabilized in form of nanoparticles.

The experiment allowed characterising the structure of the films revealing the existence of 12 different in-plane domains: six along the SrTiO3 diagonals and the remaining six at 30 degrees with respect to the former. We could confirm that the room temperature structure of ε -Fe₂O₃ is described in the *Pna2*₁ spacegroup as for nanoparticles and the bulk isostructural oxides GFeO₃ and AlFeO₃. The ε -Fe₂O₃ films were grown on STO(111) after depositing a seed layer of the isomorphous structure AlFeO₃. Films of AlFeO₃ on STO(111) with no ε -Fe₂O₃ were also studied. From the study of these films, a second outcome of the experiment was the discovery of satellites in the 00L reflections of the AlFeO₃ films which appear when this material becomes ferrimagnetic below its Curie Temperature at 250 K (see Figs. 1 and 2). This result indicates that the structure is affected by the onset of magnetic order in these polar ferrimagnets

Fig. 1: θ -2 θ pattern around the (002) Bragg peak of a 62 nm thick AlFeO₃ film, above (300 K) and below (80 K) the paramagnetic to ferrimagnetic transition.

Fig. 2: ZFC-FC magnetisation of AlFeO₃ film with in-plane applied field.

This finding indicates what kind of structural changes can be expected to find in ε -Fe₂O₃ opens the door to a detailed understanding of the coupling relationships between the spin and lattice degrees of freedom in magnetoelectric oxides.