ESRF	Experiment title: Metal borohydrides with spinel and garnet structure type: ionic conduction and hydrogen storage.	Experiment number: 01-02-1038					
Beamline:	Date of experiment:	Date of report:					
BM01-A	from: February 1 to: February 3, 2014	September 2014					
Shifts: 6	Local contact(s):	Received at ESRF:					
	Dr. V. Diadkin						
Names and affiliations of applicants (* indicates experimentalists):							
R. Cerny, Laboratoire de Cristallographie, Geneve, Switzerland							
*P. Schouwink, Laboratoire de Cristallographie, Geneve, Switzerland							
Y. Sadikin, Laboratoire de Cristallographie, Geneve, Switzerland							
*Ya. Filinchuk, Université de Louvain, Belgium							
*Iu. Dovgaliuk, Université de Louvain, Belgium							
*K. Robeyns, Université de Louvain, Belgium							

Many different trimetallic borohydride systems containing two different alkali metal and rare-earth were checked in view of spinel or garnet types structure formation. A successful synthesis of the garnet borohydride $K_3Ce_2Li_3(BH_4)_{12}$ is reported in the ball-milled system:

12 LiBH₄ + 4 BH₄ + 3 CeCl₃

with an ideal reaction as

9 LiBH₄ + 3 KBH₄ + 2 CeCl₃ \rightarrow K₃Ce₂Li₃(BH₄)₁₂ + 6 LiCl

General formula for the garnet is $X_3Y_2Z_3O_{12}$ with three cation sites X, Y and Z:

	X_3	Y_2	Z_3	O_{12}
s.g. Ia-3d	24 <i>c</i>	16 <i>a</i>	24 <i>d</i>	96h
	dist. cube	octa	tetra	
$Ca_3Al_2Si_3O_{12}$	Ca ²⁺	Al^{3+}	Si^{4+}	
Y ₃ Al ₅ O ₁₂ (YAG-garnet)	Y ³⁺	Al^{3+}	Al^{3+}	
K ₃ Ce ₂ Li ₃ (BH ₄) ₁₂	K ¹⁺	Ce ³⁺	Li ¹⁺	\mathbf{BH}_4
The garnet borohydride has be	en for the fir	st time obser	ved as a bime	etallic KCd()

The garnet borohydride has been for the first time observed as a bimetallic KCd(BH₄)₃ [1]:

s.g. Ia-3	24 <i>d</i>	8 <i>a</i> ,8 <i>b</i>	24 <i>d</i>	48 <i>e</i> ,48 <i>e</i>
KCd(BH ₄) ₃	K ¹⁺	$K^{1+}Cd^{2+}$	\mathbf{Cd}^{2+}	BH ₄ , BH ₄

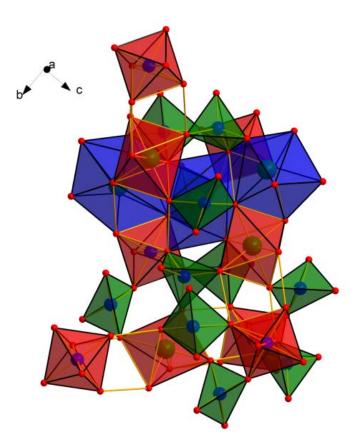


Figure 1: Typical view of a garnet-type structure with three cation sites: octahedral in red, tetrahedral in green and dodecahedral (twisted cube) in blue.

This first successful synthesis of a garnet borohydride is a starting point for preparation of borohydrides solid-state electrolytes. Disordered oxide garnets such as $La_3Ta_2Li_5O_{12}$, $(CaLa_2)Ta_2Li_6O_{12}$ or $La_3Zr_2Li_7O_{12}$ are ones of the best solid state electrolytes. We are currently preparing disordered garnet borohydrides by heterovalent substitution on the octahedral site which will create an additional disordered site for Li⁺ as it is in garnet oxides.

[1] D. B. Ravnsbæk et al., Angew. Chem. Int. Ed. 2012, **51**, 3582.