
| ESRF                                                                | Experiment title:  Connection between the nematic fluctuations and local structure in iron pnictide superconductors | Experiment<br>number:<br>HC-1177 |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Beamline:                                                           | Date of experiment:                                                                                                 | Date of report:                  |
| ID11                                                                | from: 02-07-2014 to: 05-07-2014                                                                                     |                                  |
| Shifts:                                                             | Local contact(s): Andrea Bernasconi                                                                                 | Received at ESRF:                |
| Names and affiliations of applicants (* indicates avanimentalists). |                                                                                                                     |                                  |

Names and affiliations of applicants (\* indicates experimentalists):

Boby Joseph \* Elettra – Sincrotrone Trieste S.C.p.A.

## Report:

The above beamtime enabled a comparative local structure study of pnictide superconductors  $Ca_{0.82}La_{0.18}FeAs_2$  (112-type,  $T_c \sim 40$  K) and  $Ba_{0.64}K_{0.36}Fe_2As_2$  (122-type,  $T_c \sim 37$  K), using room temperature x-ray total scattering measurements. See Fig. 1 left panel.



**Figure 1. Left panel**: Refinement results of atomic pair distribution function data at room temperature for the  $Ba_{0.64}K_{0.36}Fe_2As_2$  and  $Ca_{0.82}La_{0.18}FeAs_2$  [1]. Open circles are experimental data, red-solid lines are fit and gray-solid lines are the difference between data and fit. **Right panel**: Structural models of  $Ca_{1-x}La_xFeAs_2$  and  $Ba_{1-x}K_xFe_2As_2$ . The *a-b* plane projection of the Fe-As active layer highlighting iron-square network, view of the pnictogen position above the Fe-plane (common to both structures) and the peculiar As-As spacer layer in  $Ca_{1-x}La_xFeAs_2$  are also shown.

Analysis of the atomic pair distribution function data revealed that the Fe–As superconducting active layer is globally similar in both the systems (for details see Ref. [1]) consisting of edge-sharing FeAs<sub>4/4</sub> tetrahedra as in the general case of the iron-pnictide superconductors (see Fig. 1 - right panel). Although optimally superconducting, the active layer in these compounds is found to sustain a large local inhomogeneity. These results thus imply that a nanoscopic manipulation of the Fe–As active layer, rather than its isotropic structural tuning, is the key parameter to control the superconducting properties of the iron-based systems.