ESRF	Experiment title: Local study of the incoherent alloy InGaN in QuantumWells and NanoWires	Experiment number: MA-2152
Beamline:	Date of experiment:	Date of report:
BM08	from: 23/07/2014 to: 30/07/2014	18/10/16
Shifts:	Local contact(s):F. D'Acapito	Received at ESRF:
18		
Names and affiliations of applicants (* indicates experimentalists):		
*Xavier BIQUARD – CEA Grenoble		
*Denis JALABERT – CEA Grenoble		
*Yan-xin ZHUNAG – CEA Grenoble		
*Thomas AUZELLE – CEA Grenoble		
Bruno DAUDIN – CEA Grenoble		
Dario Sanchez - CEA Grenoble		

Report:

This experiment results are part of a published paper in Nanotechnology under the complete reference:

InGaN nanowires with high InN molar fraction: growth, structural and optical properties

Xin Zhang, Hugo Lourenço-Martins, Sophie Meuret, Mathieu Kociak, Benedikt Haas, Jean-Luc Rouvière, Pierre-Henri Jouneau, Catherine Bougerol, T Auzelle, D Jalabert, Xavier Biquard, Bruno Gayral and Bruno Daudin

Nanotechnology 27 (2016) 195704 (10pp)

doi:10.1088/0957-4484/27/19/195704

Abstract

The structural and optical properties of axial GaN/ InGaN/ GaN nanowire heterostructures with high InN molar fractions grown by molecular beam epitaxy have been studied at the nanoscale by a combination of electron microscopy, extended x-ray absorption fine structure and nanocathodoluminescence techniques. InN molar fractions up to 50% have been successfully incorporated without extended defects, as evidence of nanowire potentialities for practical device realisation in such a composition range. Taking advantage of the N-polarity of the self-nucleated GaN NWs grown by molecular beam epitaxy on Si(111), the N-polar InGaN stability temperature diagram has been experimentally determined and found to extend to a higher temperature than its metal-polar counterpart. Furthermore, annealing of GaN-capped InGaN NWs up to 800 ° C has been found to result in a 20 times increase of photoluminescence intensity, which is assigned to point defect curing.