ESRF	Experiment title: <i>Determination of redox state at the 410 km discontinuity</i>	Experiment number : ES-284
Beamline:	Date of experiment:	Date of report:
ID21	from: 13/05/2015 to: 18/05/2015	10/09/2015
Shifts: 18	Local contact(s): Camille RIVARD	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		
Nathalie Bolfan-Casanova [*]		
Juliette Maurice*		
Muriel Laubier*		
* Laboratoire Magmas et Volcans, CNRS, Université Blaise Pascal		

Report:

We measured successfully at the Fe-K edge, 8 experimental samples that consisted of ol+ opx + gt +/- cpx +/- melt (15 shifts), that were synthesized in the multi-anvil press under various thermodynamic conditions. We also measured several standards for quantification of Fe^{2+} and Fe^{3+} contents (3 shifts). We were able to retrieve the partitioning of Fe^{3+} between the different phases and constrain the distribution of ferric iron upon melting in the upper mantle. **The distribution of ferric iron increases in the order of olivine<orthopyroxene<clinopyroxene<garnet<melt.**

However, we were not able to measure all samples, so **we concentrated on the low-pressure ones**, those made in the olivine stability field (e.g. shallower than the 410 km depth discontinuity). Indeed, due to the high number of phases, high-resolution fluorescence images are required, these are performed by scanning the beam on the sample with a step of less than 1 μ m. Hence the complete analysis of one sample takes a little bit less than one day. Also, given the anisotropy of the XANES absorption, several grains have to be analysed for each phase so that a powder-like XANES spectrum is obtained with intensities of the pre-edge that are not biased by preferred orientation. Thus, the small grain size and the statisctics render the analysis time long, which we had underestimated.