$\overline{\mathrm{ESRF}}$	Experiment title: Elucidating the structure of synthetic FeNi in the L10 phase	Experiment number: HC-2378
Beamline: BM28	Date of experiment: from: 2016-05-17 to: 2016-05-23	Date of report: February 20, 2017
Shifts: 18	Local contact(s): Simon D. Brown	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):		

Andreas Frisk^{*1}; Gabriella Andersson^{*1}

 1 Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

Report:

The results from this beam time are summarized and published in:

Strain Engineering for Controlled Growth of Thin-Film FeNi L1₀; Andreas Frisk, Thomas P.A. Hase, Peter Svedlindh, Erik Johansson, and Gabriella Andersson; (2017); J. Phys. D: Appl. Phys. **50**, 085009; http://dx.doi.org/10.1088/1361-6463/aa5629

Abstract

FeNi thin films in the L1₀ phase were successfully grown by magnetron sputtering on HF-etched Si(001) substrates on Cu/Cu_{100-x}Ni_x buffers. The strain of the FeNi layer, $(c/a)_{\text{FeNi}}$, was varied in a controlled manner by changing the Ni content of the Cu_{100-x}Ni_x buffer layer from x = 0 at.% to x = 90 at.%, which influenced the common in-plane lattice parameter of the CuNi and FeNi layers. The presence of the L1₀ phase was confirmed by resonant x-ray diffraction measurements at various positions in reciprocal space. The uniaxial magnetocrystalline anisotropy energy K_{U} is observed to be smaller (around 0.35 MJ m^{-3}) than predicted for a perfect FeNi L1₀ sample, but it is larger than for previously studied films. No notable variation in K_{U} with strain state $(c/a)_{\text{FeNi}}$ is observed in the range achieved $(0.99 \leq (c/a)_{\text{FeNi}} \leq 1.02)$, which is in agreement with theoretical predictions.