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1. INTRODUCTION 
We proposed to examine samples from degraded minium (Pb3O4) from the Roman-Egyptian period and the 

Middle ages, showing blackening/formation of Plattnerite (PbO2) with the aim of elucidating the (oxidative) 

role of Cl. Both original samples and model samples were be examined via Cl-K/Pb-M4,5 edge XANES and 

XRPD mapping. Based on the literature [1], the following reactions/equilibria may (not all) be responsible: 
(1) Alkaline reaction of Pb2+ with oxidizing Cl-species, e.g.:                Pb2+ + OCl- + 2OH-  Cl- + PbO2 + H2O [2] 
(2) Acidic precipitation of litharge with NaCl:                                         PbO + Cl- + H3O+  Pb(OH)Cl↓ + H2O [3] 
(3) Disproportionation of minium,                                                              Pb3O4 + 2CO2  2PbCO3 + β-PbO2  [4] 
(4) Heat/light-induced multi-step lead oxide transformation:                     β-PbO2  Pb2O3  Pb3O4  β-PbO [5] 

Our current hypothesis to explain the presence of the great variety of secondary Pb2+-, Pb4+- and Cl-

containing compounds is that both reducing and oxidising influences may be at work here: in the absence of 

light and the presence of oxidising Cl species, either reactions (1) or (2) are expected to dominate: depending 

on the redox/pH circumstances either plattnerite (black) or laurionite (white) are mainly formed. On the other 

hand, under photo-activation conditions, next to the pathway described in [1], disproportionation reaction (3) 

and/or reaction sequence (4) may induce the co-existence of Pb3O4 with PbO2 (+ Pb-carbonates) [1], possibly 

leading to both white (PbCO3) and black (PbO2) secondary products. 

2. EXPERIMENTAL 
XANES spectra were acquired in XRF mode by scanning the primary energy around the Pb-M4,5 edge (2.45-

2.65 keV) and Cl K-edge (2.82-2.86 keV) with energy step of 0.2 eV. Investigations under vacuum (10-6 mbar) 

were performed both in unfocused mode (collimated beam, 0.2 mm diameter) and by means of a focused X-

ray beam [0.5 x 0.9 μm2 diameter (hxv)]. Energy calibration was performed with respect to the first inflection 

point of a Pb metal foil, which was determined by its first derivative.. During the μ-XRF mapping experiments, 

the fluorescence signals were generated by employing a monochromatic primary beam of fixed energy (around 

the Cl and Pb-M4,5 edges). Maps of the same area were recorded at two different excitation energies close to 

the Cl K-edge: (a) at 2.8216 keV, favoring the excitation of specific Cl-species such as PbCl2, (PbCl)2CO3 and 

PbOHCl but disfavoring that of NH4Cl, NaCl, MgCl2, KCl, CaCl2 etc. (b) at 2.8922 keV (all Cl species) to 

obtain a Cl−Kα fluorescence intensity map that is proportional to the total Cl content at a given position (i.e., 

irrespective of its oxidation state). Maps of the same area were recorded at two different excitation energies 

close to the Pb-M4,5 edge: (a) at  2.492 keV and (b) at 2.8470 keV (all Pb species) to obtain a Pb−Mα 

fluorescence intensity maps that allow to discriminate between PbCl/PbCO3/Pb-carboxylate species. Contrari 

to the expectation, these energies proved to be not informative for distinguishing between Pb(II) and Pb(IV) 



 

compounds. The program PyMca was used to fit the fluorescence spectra and separate the different elemental 

contributions [6]. 

3. RESULTS 

3.1 μ-XRF/μ-XANES maps and spectra obtained from Red Shroud Mummy samples 

Overview of the μ-XRF maps at various relevant primary energies, obtained from sample #1: 

  
The corresponding Cl K-edge XANES data show the presence of a mixture of PbOHCl, PbCl2 and a third 

component. Similar spectra and images were collected from other samples of similar origin. 

3.2 μ-XRF/μ-XANES maps and spectra obtained from Medieval Fresco samples 

 
In Pts 1-4, mainly PbSO4 is observed, possible together with reduced S-species. In Pts5-8 mainly gypsum is 

present. It is not possible to determine the origin of the S-species present. 

3.3 The corresponding XRD data, which is much more rich in data and compound signatures, is still being 

elaborated. 
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