ESRF	Experiment title: High pressure crystallographic studies of new boroncontaining luminescent materials relevant for OLED applications	Experiment number: CH-4903
Beamline: ID15B	Date of experiment: from: 25/02/2017 to: 28/02/217	Date of report: 31/03/2021
Shifts: 9	Local contact(s): Michael Hanfland	Received at ESRF:
Names and affiliations of applicants (* indicates experimentalists):Radosław Kamiński, * Katarzyna N. Jarzembska, Mateusz Piędzio * : Department of Chemistry,University of Warsaw, Żwirki i Wigury 101, Żwirki i Wigury 101, 02-089, Warsaw, Poland		
Krzysztof Durka *: Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Żwirki i Wigury 101, 02-089, Warsaw, Poland		
Damian Paliwoda *: European Synchrotron Radiation Facility, 71 avenue des Martyrs, Grenoble, France; Department of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland		

Report: Boron compounds were found to be more resistant to hydrolysis and more efficient emitters than their well-known and widely applied Al analogues.^[1] Due to their high quantum yield values (up to about 60%) and potential applications in the construction of organic-light-emitting diodes (OLEDs) we have focused our attention on the synthesis and crystal structure of a family of bis-8-hydroxyquinoline DBA derivatives (dibenzosilaborins, dibenzoazaborins, dibenzophospha-borins and dibenzochalcogenaborins).

We have chosen three crystal systems for high pressure diffraction studies at ID15b High Pressure Beamline: parent DBA compound and the two polymorphic forms of its fluoro derivative (diBFHQ and tetrahydrofuran solvate, diBFHQ·THF).

Figure 1. General scheme of 5,10-bis(8-oxyquinolinato)-5,10-dihydroboranthrenes (R = various fluorine substituents).

High pressure single crystal diffraction experiments under hydrostatic and pseudo-hydrostatic conditions (using helium as the pressure transmittin medium) up to at least 18 GPa revealed series of pressure-induced phase transitions of diBFHQ and diBFHQ.THF crystals.

Triclinic diBFHQ polymorph at 1.7 GPa

Triclinic diBFHQ polymorph at 4 GPa

Monoclinic diBFHQ THF polymorph at ambient pressure

Triclinic diBFHQ THF polymorph at 1.9 GPa

Upon compression, diBFHQ undergoes at least to isostructural ($P\overline{1}$ to $P\overline{1}$) phase transitions, at 2 and 4 GPa respectively. Its tetrahydrofuran solvate forms monoclinic crystals at ambient pressure (space fgroup $P2_1/a$) and transforms to triclinic $P\overline{1}$ polymorph at 1.9 GPa and at still elevated pressure again to monoclinic phase of $P2_1$ space group.

References:

- [1] A. Michaelis, P. Becker, Ber. Deutsch. Chem. Ges., 1880 13, 58-61.
- [2] E. Khotinsky, M. Melamed, Ber. Deutsch Chem. Ges., 1909 42, 3090-3096.
- [3] N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett., 1979, 3437-3440.
- [4] S. Luliński, J. Smętek, K. Durka and J. Serwatowski, Eur. J.Org. Chem., 2013, 8315-8322.
- [5] K. Durka et al., J. Mater. Chem. C 2015, 3, 1354.