EUROPEAN SYNCHROTRON RADIATION FACILITY

INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

Experiment Report Form

The double page inside this form is to be filled in by all users or groups of users who have had access to beam time for measurements at the ESRF.

Once completed, the report should be submitted electronically to the User Office via the User Portal:

https://wwws.esrf.fr/misapps/SMISWebClient/protected/welcome.do

Reports supporting requests for additional beam time

Reports can be submitted independently of new proposals – it is necessary simply to indicate the number of the report(s) supporting a new proposal on the proposal form.

The Review Committees reserve the right to reject new proposals from groups who have not reported on the use of beam time allocated previously.

Reports on experiments relating to long term projects

Proposers awarded beam time for a long term project are required to submit an interim report at the end of each year, irrespective of the number of shifts of beam time they have used.

Published papers

All users must give proper credit to ESRF staff members and proper mention to ESRF facilities which were essential for the results described in any ensuing publication. Further, they are obliged to send to the Joint ESRF/ ILL library the complete reference and the abstract of all papers appearing in print, and resulting from the use of the ESRF.

Should you wish to make more general comments on the experiment, please note them on the User Evaluation Form, and send both the Report and the Evaluation Form to the User Office.

Deadlines for submission of Experimental Reports

- 1st March for experiments carried out up until June of the previous year;
- 1st September for experiments carried out up until January of the same year.

Instructions for preparing your Report

- fill in a separate form for each project or series of measurements.
- type your report, in English.
- include the reference number of the proposal to which the report refers.
- make sure that the text, tables and figures fit into the space available.
- if your work is published or is in press, you may prefer to paste in the abstract, and add full reference details. If the abstract is in a language other than English, please include an English translation.

ESRF	Experiment title: Possible J=1/2 state in thin films of Ir-based double perovskites Sr ₂ MnIrO ₆	Experiment number: HC 3251
Beamline:	Date of experiment:	Date of report:
ID-12	from: 30.08.17 to: 04.09.17	02.11.17
Shifts:	Local contact(s):	Received at ESRF:
15	ROGALEV Andrei	
Names and affiliations of applicants (* indicates experimentalists):		
DASGUPTA Supratik ^{1*} , KOMISSINSKIY Philipp ^{1*} , MAJOR Marton ^{1*} , ALFF Lambert ¹ ¹ Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany		

Report:

3d-5d based compounds have drawn an increased scientific interest due to interplay between strong correlation effects in 3d-ions and large spin-orbit-coupling (SOC) in 5d-ions[1]. Recent theory and experiments reveal Ir⁴⁺ (5d⁵) to exhibit effective total angular momentum $J = \frac{1}{2}$ due to large SOC[2,3]. Even a small Coulomb repulsion U may open a Mott gapped state in Iridates, which results in $J = \frac{1}{2}$ due to the spin-orbital Mott state. Here, we report on investigation of the magnetic properties of epitaxial thin films of new Ir⁴⁺ based compounds Sr₂MnIrO₆ and LaSrMnIrO₆ with different epitaxial strain stabilized using pulsed laser deposition on SrTiO₃, DyScO₃, and (LaAlO₃)_{0.3}(Sr₂TaAlO₆)_{0.7} substrates.

The total magnetic moments of Sr_2MnIrO_6 and LaSrMnIrO_6 thin films on the $SrTiO_3$ substrates were characterized using a superconducting quantum interference device (SQUID). The total magnetization curves for both compounds are shown in Fig. 1 as functions of the applied field (a, c) and temperature (b, d). The magnetization *vs*. field curves for both compounds display well defined hysteresis loops with different anisotropies and the saturation magnetizations of 0.4 and 0.6 $\mu_B/f.u.$ for the Sr_2MnIrO_6 and LaSrMnIrO_6 thin films, respectively. In Sr_2MnIrO_6 , interaction between anti-ferromagnetic insulator $SrMnO_3$ and paramagnetic semi-metal $SrIrO_3$ layers gives rise to a ferri-magnetic low-band gap insulating behaviour. As compared to Sr_2MnIrO_6 , the La-doped LaSrMnIrO_6 compound shows higher saturation magnetization and magnetic Curie temperature (T_c). In order to characterize the contribution of spin-orbit coupling and to compare the role of magnetism in Ir for both compounds, x-ray magnetic circular dichroism (XMCD) measurements of the Sr_2MnIrO_6 and LaSrMnIrO_6 thin films were performed at the Ir $L_{2,3}$ x-ray absorption edges.

Absorption spectra were recorded using the total fluorescence yield detection mode. The XMCD spectra for both Sr_2MnIrO_6 and LaSrMnIrO₆ films were obtained as direct difference between consecutive X-ray Absorption Near Edge Spectrum (XANES) scans recorded with opposite helicities of the incoming x-ray beam. All measurements were performed at 5 K which is well below the observed T_c for both materials.

Figure 1: (a,c) Magnetization *vs.* field and (b,d) magnetization *vs.* temperature curves for Sr_2MnIrO_6 and LaSrMnIrO₆ thin films measured with a SQUID magnetometer. XANES and XMCD spectra of the $IrL_{2,3}$ edges for (e) Sr_2MnIrO_6 and (f) LaSrMnIrO₆ thin films measured at 5 K.

The measured XANES spectra with the correspondent XMCD signals for Sr₂MnIrO₆ and LaSrMnIrO₆ are shown in Fig. 1 (e) and (f), respectively. For Sr₂MnIrO₆, we derived a positive XMCD signal with the corresponding spin magnetic moment of $m_{spin} \approx 0.026 \,\mu_B$ and orbital moment of $m_{orbital} \approx 0.004 \,\mu_B$ $(|m_{orbital}/m_{spin}| \approx 0.15)$ resulting in a total paramagnetic moment of $m_{tot} \approx 0.030 \,\mu_B$ per Ir atom. For LaSrMnIrO₆, the negative XMCD signal has been observed and the total magnetic moment of Ir is aligned opposite to the net magnetization. Quantitavely, a spin magnetic moment of $m_{spin} \approx -0.201 \,\mu_B$ and an orbital magnetic moment of $m_{orbital} \approx 0.129 \,\mu_B$ were calculated using the sum rules, i.e. $|m_{orbital}/m_{spin}| \approx 0.64$ and $m_{tot} =$ $-0.072 \,\mu_B$ at the Ir-site. Thus, doping of Sr₂MnIrO₆ with La results in the Mn³⁺ (3d⁴) state in LaSrMnIrO₆ with an extra e_g electron, which is effectively hybridized with the Ir 5d shell leading to the observed induced negative total magnetic moment at the Ir-site.

In summary, based on our XMCD measurements, we confirm presence of an induced magnetic moment at the Ir-site in LaSrMnIrO₆ due to hybridization of the e_g electron between the Mn³⁺ (3d⁴) and Ir⁴⁺ (5d⁵) states. Quantitative estimations of spin and orbital moment in the case of LaSrMnIrO₆ confirm an unquenched orbital moment at the Ir-site, which contributes to the observed total magnetic moment. In Sr₂MnIrO₆, the observed small paramagnetic moment at the Ir-site indicates that hybridization between the t_{2g} electrons of the Mn⁴⁺ (3d³) configuration and the Ir 5d shell is supressed. Unfortunately, we could not perform XMCD measurements as a function of the Sr₂MnIrO₆ strain state as the thin-film samples on DyScO₃ substrates were detached from the sample holders on application of strong magnetic fields due to high paramagnetic moment of Dy. Moreover, in the case of (LaAlO₃)_{0.3}(Sr₂TaAlO₆)_{0.7} substrates, XANES spectra at the Ir L_{2,3}-edges were masked by signal from nearby Ta-edge.

[1] A. Kolchinskaya et al Phys. Rev. B **85**, 224422 (2012).

^[2] H. Zhang et al Phys. Rev. Lett. 111, 246402

^[3] Woo Jin Kim, et al Phys. Rev. B 93, 045104