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1. Abstract 
Proposed experiments intend to highlight the distribution of, on the one hand, (hydroxyapatite - HA) crystal 

microstructural features (size distribution, spatial pattern), and, on the other hand, mechanical stresses induced by bone 

reconstruction treated with BCP (Biphasic Calcium Phosphate biomaterial), mainly supported by the mineral part of bone 

architecture. Such investigations are achieved through mechanical state mapping in various regeneration levels until 

complete reconstruction, considering samples harvested at different regeneration stage, and under incremental mechanical 

load. The evolution of the mechanical properties as regard to bone regeneration microstructure was investigated thanks to 

in situ tensile testing under synchrotron WAXS and SAXS (Wide- Small Angle X-ray Scattering). The size and orientation 

of bone mineral particles as well as the spatial distribution of particle agglomerates in rat calvaria defects were investigated 

at different healing stages. The resulting two dimensional maps of elastic strain, mean thickness and degree of orientation 

for the mineral phase, revealed the strong correlation between the bone mechanical properties and the crystalline phase 

organization. 

 

2. Experiment details 
Mechanical investigations have been carried out on parallelepiped-shaped samples (10 × 5 × 0.6 mm3) harvested from rat 

calvarias at different regeneration stages (2, 4, 6, and 8 weeks after surgery). Dogbone-shaped samples have been managed 

by embedding 2 mm of the ends of their longest dimension (10 mm) in a non-invasive, low polymerization temperature, 

high stiffness resin. The samples were studied through in situ tensile testing in the elastic regime in a step-by step mode 

(initial mechanical stress state + 4 incremental loads) up to 50 N. For each loading step, SAXS and WAXS mapping were 

achieved across the bone defect, in transmission mode, thanks to a Pilatus detector with scanning steps of 60 μm in a 

continuous line-scan mode along and perpendicular to the tensile axis with 38 × 26 µm2 spot size and 15 keV beam energy 

(≈ 1.0 Å wavelength). The drawn maps ensure a thorough investigation of the strain distribution in HA nanocrystallites 

across the interface between natural and regenerated bone over a 2 × 2 mm² area of acquisition (a fourth of the area of 

interest, symmetrically representative of the entire circular defect). 

 

3. Results 

Figure 1 presents maps of both longitudinal deformations (i.e. along the loading direction) for the {00.2} plane family in 

mineral particles in and around the defect (Fig. 1.a) and the related mean orientation of HA particles platelets (Fig. 1.b), 

at 8 weeks of regeneration. The main result deduced from Fig 1.a stands in the reduction of heterogeneity of mechanical 

properties highlighted by a relatively uniform distribution of the internal strains between the natural (703 ± 90 µdef ) and 

regenerated (630 ± 175 µdef) bone parts. This therefore reflects an elastic modulus E of the regenerated crystals close to 

that of the crystals initially present in the bone around the defect. However, these results should be qualified because of 



 

the limited number of measuring points that can be used in the implanted region. Indeed, the hatched areas in figure 1 

correspond to measurement points that are not usable (and therefore eliminated from the study). Indeed, the contribution 

of BCP to the diffraction signal in these areas is higher than that of HA crystals. As the H factor and crystalline strains are 

deduced from an analysis of the {002} diffraction peak in WAXS, their determination is made very delicate as soon as the 

intensity ratio observed between the BCP diffraction peaks and those of HA crystals becomes unfavorable. 

Fig 1.b presents the map of the Hermans orientation factor at 8 weeks post implantation by BCP. The synthesized tissue 

(organic and mineral) in the new matrix is mostly well oriented as regard to the orientation met in the natural bone for this 

regeneration time. Perfect homogenization with the natural bone is observed from the second week of regeneration (results 

not presented here). This shows that the newly formed HA crystals on the edges of the defect and around the grains of 

BCP orient and organize themselves naturally along the major axis of the bone as soon as they are formed. 

 

 
 

Figure 1: (a) Mapping of longitudinal deformations for the {00.2} plane family in HA particles in and around the defect 

implanted by BCP for a load of 30 N, (b) associated Hermans’ orientation factor at 8 weeks post-implantation. (dotted 

black lines indicate the original defect position; lattice strains are given as micro-strain (, units of 10-6)) 

 

 

 
 

Figure 2: Integrated intensity vs 2θ in the defect implanted by BCP at 8 weeks post-implantation 

 

As shown in Figure 2, the diffraction peak observed around 2  14.6° result in the convolution of different peaks: {00.2} 

reflection from the mineralized bone particles and diffraction peaks related to BCP phase. The analyses are therefore 

underway and a peak deconvolution procedure (feasible as regard to the strong peak shape difference, related to the 

diffraction domain size) is currently being applied to clearly separate reflection contributions.  
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