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Report:  

The development of future high performance supercapacitors demands for a detailed understanding of the 

double-layer formation in confined systems. In recent years, in situ small angle X-ray scattering (SAXS) and 

in situ X-ray transmission (XRT) measurements have been emerged as suitable methods to analyze global and 

local ion rearrangement.[1, 2] In addition, the use of specially designed hierarchically ordered mesoporous 

carbon materials combined with in situ SAXS allows to track electrode expansion and contraction on the 

nanometer length-scale [3] Although XRT and SAXS allow us to study structural and concentration changes, 

these techniques suffer from a major drawback: because of the lack of element sensitivity additional data (e.g. 

the overall charge) is needed to distinguish between the individual ions. Therefore, we proposed in situ 

anomalous small-angle X-ray scattering (ASXS) as a possible technique to overcome this issue. 

We performed an in situ ASAXS experiment at ID02 during which a working supercapacitor cell was charged 

and discharged. The changes of the scattering intensity during charging and discharging are rather small (in 

the percent range) and lead to very small ASAXS effects. Therefore, the aim of this experiment was to 

demonstrate the principal applicability of ASAXS to provide both, element sensitivity and structural 

sensitivity without the need of additional (e.g. electrochemical) data. The cell used for this experiment had a 

specially designed housing optimized for in situ SAXS experiments. The cell itself contained electrodes made 

of a nanocast hierarchically ordered mesoporous carbon material, consisting of carbon nanorods on a 

hexagonal lattice, and a 1M RbBr aqueous electrolyte. The RbBr electrolyte was chosen according to the 

accessible energy range of ID02, allowing to perform ASAXS experiments at the absorption K-edges of both, 

Br and Rb ions. A fluorescence (XRF) detector was mounted behind the supercapacitor cell to track the 

change of the fluorescence signal during charging and discharging of the supercapacitor. 

Two different electrochemical experiments were performed (cyclic voltammetry and chronoamperometry) 

while measuring SAXS intensity at four selected energies below the absorption K-edge of Br and Rb. During 

the chronoamperometry (Figure 1), the supercapacitor cell was charged to 0.6 V. After a 2000 s 

equilibration, the SAXS measurements at the 8 different photon energies were performed. Additionally, 1.5 

cyclic voltammetry periods where measured at a constant photon energy, before switching to the next energy. 



 

As a result, the time resolution was not limited by the change of photon energy. However, this procedure 

requires a good stability of the in situ cell over time, which was not perfectly the case. Therefore, only the 

chronoamperometry data could be evaluated quatitatively. 

 

Figure 1: Chronoamperometry measurements (black line) with the red boxes indicating the time period needed to 

perform the ASAXS measurements at 8 different energies. The blue lineshows the accumulated charge measured by a 

potentiostat. 

By analyzing the ASAXS data carefully, we were able to track ion specific concentration changes for positive 

and negative applied potentials. Additional, we have shown that it is also possible to see structural changes 

(due to local ion rearrangement) with a single experiment without the need of additional electrochemical data. 

The results of this experiment have already been published in ACS Applied Materials and Interfaces. [4] 

It turned out, that fluorescence contributions from Br when measuring at the Rb edge significantly influence 

the measurements. Since both, fluorescence and ion concentration changes lead to an approximately constant 

intensity contribution at large q in ASAXS, their separation is usually not straight forward. Here, the 

independent detection of the fluorescence signal can be very helpful. Unfortunately, the fluorescence detector 

was not synchronized with the SAXS detector. Therefore, it was not possible to evaluate the fluorescence 

contribution of the SAXS data in this experiment, but will be taken care for in future work.  

Nevertheless, the intensity of the fluorescence radiation is proportional to the ion concentration in the whole 

irradiated volume. As a result, we have been able to track the concentration changes of Rb and Br during 

cyclic voltammetry without the need of additional (electrochemical) data (Figure 2). 

 

Figure 2: Calculated ion concentration change from XRF as a function of the applied potential. 

In conclusion, this experiment represents a first proof-of-principle study showing that ASAXS is indeed 

capable of tracking structural changes for individual ion types at the nanometer level. In a next step, 

chronoamperometry measurements at different potentials and the use of different electrolytes (e.g. RbCl, 

CsBr) would greatly help understanding the behavior of the individual ions in more detail. Additionally, the 

synchronization of the fluorescence detector and the SAXS detector would be beneficial. 
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