ESRF	Experiment title: In-situ real-time GI-SAXS/WAXS investigation of diindenoperylene orientation and growth kinetics on monolayer MoS ₂	Experiment number: SC-4814
Beamline:	Date of experiment:	Date of report:
ID10	from: 02.03.2018 to: 06.03.2018	3.3.2020
Shifts:	Local contact(s):	Received at ESRF:
12	Andrei Chumakov	

Names and affiliations of applicants (* indicates experimentalists):

Martin Hodas¹*, Peter Siffalovic²*, Frank Schreiber¹, Alexander Gerlach¹, Nada Mrkyvkova²*, Berthold Reisz¹*, Michal Bodik²*, Peter Nadazdy²*

¹Institut für Angewandte Physik - Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen

²Institute of Physics – Slovak Academy of Sciences, Dubravska cesta 9, 84511 Bratislava

Report:

1. Abstract

During this beamtime we performed in-situ real-time GI-SAXS/WAXS experiments of diindenoperylene (DIP) growing on monolayer MoS_2 and few-layer MoS_2 with different alignment of atomic layers [1]. We studied the intra-island molecular orientation of the DIP molecules during growth on MoS_2 with different alignment. In-situ real-time GIWAXS was employed to verify the *lying-down* or *standing-up* DIP phase in thin film [2].

2. Experimental Results

Our setup consisted of organic molecular beam deposition (OMBD) chamber [3] and 2D detector: Pilatus in 0.36m sample-detector distance to record GIWAXS data. We deposited in total eight samples with different substrates and substrate temperatures. In real-time GIWAXS measurements we tracked the 001 integral intensity and diffraction peak width along q_z and q_{xy} directions in reciprocal space maps (RSMs). The total deposition time was 90 minutes with the integration time of 60 s for single frame. The fitted change of unit cell's *c* axis as a function of effective thickness (nm) for *lying-down* and *standing-up* DIP are given in Fig. 2. We found out that the orientation of the MoS₂ layers subsequently influences the orientation of DIP molecules. Fig. 1 shows the 001 diffraction peak positions of DIP layers ($q \approx 0.39 \text{ Å}^{-1}$) grown on 3 and 9 nm thick MoS₂ films (left and right RSM). On the horizontally aligned MoS₂, we also detected the 110 diffraction peak ($q \approx 1.15 \text{ Å}^{-1}$), see Fig. 1 (left). More diffraction spots were

observed for DIP thin films on a MoS_2 monolayer, which were used to calculate the full set of unit cell parameters and the molecular orientation within the unit cell.

Fig. 2 Temporal evolution of unit cell's *c* axis as a function of effective thickness (nm) for *lying-down* and *standing-up* DIP

3. Remarks on quality of measurements

We found the ID10 beamline particularly suited for our in-situ real-time GI-SAXS/WAXS experiments with weakly scattering organic materials. Although we had to take some precautions in order to avoid beam damage on our samples, we consider the obtained signal very good.

4. Status and progress of data evaluation

We fully analyzed the data and published two articles out of this experiment.

- N. Mrkyvkova et al., Appl. Phys. Lett. 114 (2019), 251906

- J. Hagara et al., Phys. Chem. Chem. Phys. 22 (2020), 3097-3104

We thank O. Konovalov for the valuable support and Andrei Chumakov for local contact during the beamtime.

5. References

- 1. M. Sojkova et al., RSC Adv. 9 (2019), 29645-29651
- 2. M. Hodas et al., ACS Appl. Nano Mater. 1 (2018), 2819-2826
- 3. K. A. Ritley et al., Rev. Sci. Instr. 72 (2000), 1453