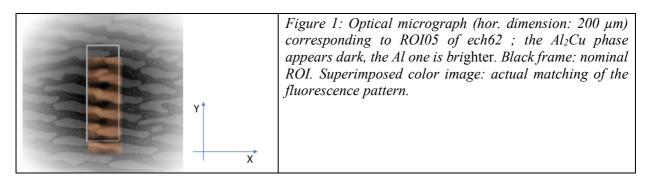
ESRF	Experiment title: Influence of crystal orientation relationships on the morphology of lamellar eutectic microstructures	Experiment number: 32 02 812					
Beamline:	Date of experiment:	Date of report:					
BM32	from: June 28. 2018 to: July 2. 2018	July 17, 2018					
Shifts: 12	Local contact(s): Jean-Sébastien Micha	Received at ESRF:					
Names and affiliations of applicants (* indicates experimentalists): Silvère Akamatsu*, Sabine Bottin-Rousseau*, Bernard Croset*, Geoffroy Prévot* *INSP – Sorbonne Université – CNRS UMR 7588 4 place Jussieu, 75005 Paris							

Report:

- Objective & expected results: -

The aim of this project (Proposal number: 20171113 ; Experiment number: 3202812) is to establish a link between microstructural features of melt-grown metallic composites and the orientation of the co-growing crystals. This is key to improving our understanding of the formation of textures in eutectic materials. Fundamentally, the challenge is to develop theoretical tools for predicting the self-organizing growth dynamics of eutectics and the anisotropy of the interphase boundaries in the solid. In practice, <u>micro-diffraction analyses</u> at BM32 (J.-S. Micha) aim at determining the crystal orientation relationships (ORs) between neighbouring crystals of the two eutectic-solid phases [the cubic Al-rich terminal solution (Al), and the tetragonal intermetallic Al₂Cu] on a local scale in eutectic solidification microstructures of thin Al-Al₂Cu metallic films. Synchrotron radiation permits to make non-destructive measurements through a sapphire-plate substrate.

- Results and the conclusions of the study: -


Thin Al-Al₂Cu films (thickness ≈ 9 —14 µm; lateral dimensions 8×50 mm²) are enclosed between two singlecrystal sapphire (Al₂O₃) plates. They were prepared by plasma sputtering and solidified at INSP. The thickness of one sapphire plate was reduced to 200 µm. Two solidification methods with real-time optical observation were employed: (i) directional solidification, and (ii) rotating directional solidification (RDS) that permits to vary continuously the orientation of the solid with respect to the growth axis.

We selected samples containing typically 2–4 lamellar-eutectic grains (each being supposedly uniform as regards the orientation of the crystals) of a few mm each. Non-destructive Laüe micro-diffraction allows one to map the orientation of the alternating (Al) and Al₂Cu crystals over selected regions, with good transmitted signal through the 200- μ m thick Al₂O₃ substrate, and an actual resolution much better than the size of the smaller crystals ($\approx 5 \mu$ m). This provides a means for distinguishing between different grains, and gaining information on the degree of mosaicity, if present, within a given grain.

Sample	Alloy	DS/RDS/NA	Sapphire	Scan names	Analysis date
n°			cover		
Ech44	Al-Al ₂ Cu	DS	Yes	ROI01-ROI08 (tests)	06/28/2018
				ROI01, ROI08-ROI21	06/29/2018
Ech45	Al-Al ₂ Cu	DS	Yes	ROI01-ROI09 ; ROI20-	06/30/2018
				ROI22	
Ech49	Al-Al ₂ Cu	DS	Yes	ROI01-ROI15	07/01/2018
Ech19	Al-Al ₂ Cu	DS	No	ROI01	06/30/2018
Ech28	Al-Al ₂ Cu	DS	No	ROI01-ROI08	06/28/2018
				ROI21-ROI28	
Ech62	Al-Al ₂ Cu	RDS	Yes	ROI01-ROI09	07/01/2018
Ech59	Al-Al ₂ Cu	NA	No	ROI depot	07/01/2018
Ech710	In-In ₂ Bi	DS	***	ROI01-ROI03	07/01/2018

Table 1: List of samples and scans. DS: directional solidification. RDS: rotating directional solidification. NA: as-deposited sample. Note that Ech710 was a thin solidified In-In₂Bi eutectic. *** \approx 50µm glass.

Each Region of Interest (ROI) was scanned, and an x-ray detector used to collect a characteristic fluorescence of copper for revealing the microstructure of the actually scanned area (Fig. 1). The raw output data are a set of Laüe patterns for each ROI. For each sample, we also measured a Laüe pattern on a reference Ge crystal fixed on the sample surface for fine angle-scale calibration, and another one on the sapphire plates.

Let us now take Ech62 as an illustrative example (Fig. 2).

Fig. 3 shows a Laüe pattern measured at some point in an Al lamella. Note that, in all Laüe patterns, diffraction peaks coming from the Al₂O₃ single-crystal substrates could be easily identified. Using the LaueTools software, we could locate Al peaks (see mosaic image, Fig. 3b), and successfully run a best-fit procedure (Fig. 3c). It is thus shown, in particular, that a (111) plane is tilted by a few degrees off the substrate. A similar analysis for a neighbouring Al₂Cu lamella is shown in Fig. 4. We will extract the orientation of the crystals (rotation matrix and/or Euler angles), and look for special ORs.

Figure 2: Sample Ech62: examples of ROIs (horizontal dimension: 200 μ m). The blue dot signals a given Al₂Cu lamella that we followed over a long distance in the microstructure.

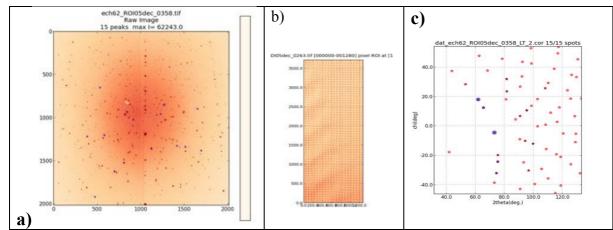


Figure 3: a) Laüe pattern in an Al crystal. b) Mosaic image that shows that the variation of the intensity of a particular peak also follows the alternation of the lamellae. c) Best fit of the selected peaks (blue). The high-intensity (222) peak is close to the normal to the sample plane (2theta=80deg; chi=0 deg).

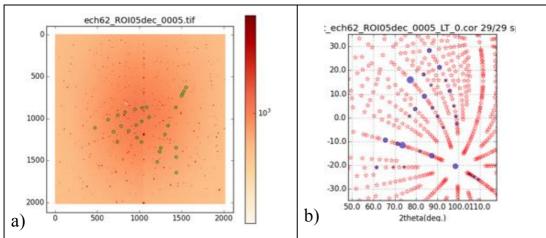
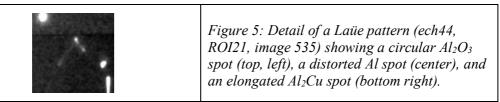



Figure 4: a) Laüe pattern in an Al₂Cu crystal. b) Best fit of selected peaks (blue). The (100) peak is clearly visible.

In addition to the main problem (link between crystal orientation and microstructural features), various questions will be tentatively addressed:

1-Is there a variation of the orientation of the lamellae during growth ? **2**-In a given eutectic grain, all the lamellae of one phase are known to originate from a single crystal seed. We have to check, however, if there is, as is often suspected, a progressive rotation, up to a few degrees, of the crystal lattice of the crystals across a eutectic grain. **3**-Ddiffraction peaks are often not circular (Fig. 5). This feature can evolve from one interphase boundary to the other, inside a given lamella. A detailed interpretation of that is not straighforward.

- Justification and comments about the use of beam time: -

The use of the synchrotron radiation was need for nondestructive analysis through a sapphire plate. Microdiffraction at ESRF in addition provides spatially resolved series of measurements, including crystal distortion, on a local scale with an unprecendented accuracy.

- Conclusion: -

In conclusion, our micro-diffraction measurements on Al-Al₂Cu solidification microstructures through a sapphire plate have been successful. The use of a reference sample without sapphire was helpful for spatial calibration. Both Al and Al₂Cu crystals can be nicely indexed. The analyses will be performed more systematically. This requires not only the use of the LaueTools software, but also some image-analysis

development. The distortion of diffraction peaks seems to indicate small-scale strain: do mechanical stresses develop during growth at a small distance from the solid-liquid interface, or at a much lower temperature, far from the solidification front ? This question cannot be addressed ex situ. It would encourage, and motivate one to develop in situ micro-diffraction during solidification.