

ESRF	Experiment title: Alkali metal nitrate (MNO ₃ , $M=K$, Li) promoted MgO for CO ₂ capture: time resolved <i>in situ</i> studies on MgO and MgCO ₃ formation	Experiment number: EV-337
Beamline :	Date of experiment:	Date of report:
ID31	from: 12.09.2018 to: 15.09.2018	01.03.2021
Shifts:	Local contact(s):	Received at ESRF:
9	POULAIN Agnieszka	XX.03.2021
Names and affiliations of applicants (* indicates experimentalists):		
Margarita Rekhtina*, Paula M. Abdala*, Athanasia Tsoukalou*, Giancarlo Luongo*, Alexey Fedorov, and Christoph Müller		
Laboratory of Energy Science and Engineering, Institute of Energy Technology,		
ETH Zurich, Leonhardstrasse 27, 8092 Zurich, Switzerland		

Report:

The aim of this proposal is study the structural to changes taking place under working conditions in MgO-based CO₂-sorbents. Total scattering experiments been have carried out during carbonation and regeneration processes on a NaNO3-modified MgO sorbent in cyclic operation. For this experiment, the material, MgO-20NaNO₃ (molar ratio NaNO₃/MgO=0.2), was prepared by mixing MgO

Figure 1. XRD patterns of MgO-20NaNO₃ (**a**) after regeneration, full patterns and insets to the MgO (200) reflection, (**b**) after carbonation, full patterns and insets to the $MgCO_3$ (104) reflection.

and NaNO₃ powders. The experiments were carried out in a quartz capillary cell (1.0 mm outer diameter) heated by a gas blower. The sample was first pre-treated at 450 °C under N₂ (7 ml/min); and afterwards subjected to 10 cycles of carbonation-regeneration. The carbonation was performed at 315 °C, under a flow of 7 ml/min of CO₂, followed by a regeneration step at 450 °C under 7 ml/min of N₂. The overall time of the

cyclic experiment was ~26 hours. Reference compounds (MgO, MgCO₃, NaNO₃) were studied under in situ conditions (ramp from 50°C to 315°C under 7 ml/min N₂ for MgO and NaNO₃ and under 7 ml/min CO_2 for MgCO₃). The wavelength was set to 0.1771 Å and the data were collected using a Pilatus3 X CdTe 2M

Figure 2. PDFs obtained during the regeneration treatment of the sorbent in the 9th cycle, PDFs are shown in the ranges (**a**) 0-20 Å (**b**) 0-5 Å with main interatomic distances marked.

detector positioned at two different sample-to-detector distances (d=83cm and d=23cm for XRD and PDF data analysis, respectively). The data acquisition during each carbonation cycle was the following: i) Time resolved (1s) XRD data were acquired at during the first 50 min of carbonation process to capture the fast changes that may occurring at the beginning of the carbonation stage (as observed in a previous experiment MA-3415). ii) In the following 40 min of carbonation, XRD and PDF data were acquired alternately (time resolution=60s). We should mention that several problems with the data acquisition software occurred during experiment. The ESRF local contact and computing staff have intervened actively to solve the problems.

The overall experiment gave relevant information about the carbonation and regeneration processes. Rietveld refinements of the data in reciprocal space as well as the analysis in real space by PDF have been performed using TOPAS software package. The results of Rietveld refinement combined with kinetic modelling (Avrami-Erofeev model) show the deactivation-activation behavior of the sorbent, which has been attributed to the interplay between increase in average crystallite size of MgO and formation of minor amounts of additional Na₂CO₃/Na₂Mg(CO₃)₂ phases (to the best of our knowledge they have never been reported to form during the cycling before). The formation of the phases is associated with the partial decomposition of the molten promoter during regeneration step and further interaction of the decomposition products with CO₂ during the carbonation step. The results of the combined XRD and PDF analyses provide comprehensive understanding of factors affecting the cyclic performance of the sorbent (both for crystalline phases and liquid promoter). A manuscript summarizing the obtained observations is currently under preparation.