| ESRF                                                                                                                                                                                                                                                                                                             | <b>Experiment title:</b> In Situ detection of Ce oxidation state in garnet-<br>type nanocrystals by high resolution | <b>Experiment</b><br><b>number</b> :<br>MA-4275 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| Beamline:                                                                                                                                                                                                                                                                                                        | Date of experiment:                                                                                                 | Date of report:                                 |
| BM16                                                                                                                                                                                                                                                                                                             | from: 3 october 2018 to: 8 Octobre 2018                                                                             | 14 February 2020                                |
| Shifts: 18                                                                                                                                                                                                                                                                                                       | <b>Local contact</b> (s): Denis Testemale and Jean-Louis Hazemann,<br>BM16 (FAME-UHD)                               | Received at ESRF:                               |
| Names and affiliations of applicants (* indicates experimentalists):<br>*Geraldine Dantelle (Institut Néel, Grenoble), *Alexandra Cantarano (Institut Néel, Grenoble), *Alain Ibanez<br>(Institut Néel, Grenoble), *Denis Testemale (Institut Néel, Grenoble), *Jean-Louis Hazemann (Institut Néel,<br>Grenoble) |                                                                                                                     |                                                 |

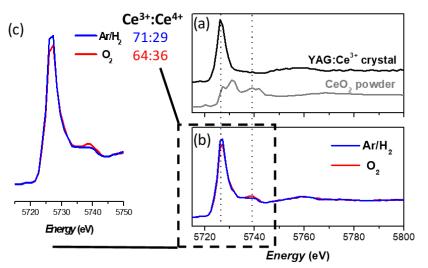
**Context:** Nano-sized  $Y_3AI_5O_{12}$  doped Ce<sup>3+</sup> (YAG:Ce) have attracted a great interest for a use as nanophosphors in white LEDs, with the aim of reducing the back-scattering induced by micron-sized YAG in commercial LEDs. We developped an original solvothermal method using high pressure and high temperature, allowing to produce nanocrystals with a high crystal quality [1,2]. However, using *in situ* high-resolution XANES experiments at the L<sub>3</sub> edge of Ce (5.723 keV) on the BM16 beamline at the ESRF, we showed the luminescent Ce<sup>3+</sup> ions are partially oxidized into Ce<sup>4+</sup>, reducing the photoluminescence of our nanocrystals [1]. The aim of these high-resolution XANES experiments was to find new experimental conditions (addition of reducing agent, bubbling of a reducing gas) of the sovlvothermal synthesis conditions to prevent Ce<sup>3+</sup> oxidation up synthesis of YAG:Ce nanocrystals.

In addition, we studied Ce-doped garnet-type single-crystals containing additional codoping ions. These single-crystals have strong applications as scintillators. It has proved that, for scintillation properties, the presence of Ce<sup>4+</sup> ions is more favorable. The idea was to codope Ce-doped Gd<sub>3</sub>Al<sub>2</sub>Ga<sub>3</sub>O<sub>12</sub> and Lu<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> single-crystals with Mg<sup>2+</sup> and Li<sup>+</sup> ions, which could act as charge compensators and promote the oxidation of cerium. The high-resolution XANES experiments were performed to determine the Ce<sup>3+</sup>:Ce<sup>4+</sup> ratio in these single-crystals.

**Experimental:** The oxidation state of Ce in nanocrystals of Ce-doped  $Y_3AI_5O_{12}$  (YAG:Ce) and in other garnettype single-crystals was examined using high-resolution XANES experiments at the L<sub>3</sub> edge of Ce (5.723 keV). A total of 18 *ex situ* (on powder) experiments were performed. The high sensitivity of the BM16 (FAME-UHD) was necessary to quantify accurately the Ce<sup>3</sup>+:Ce<sup>4+</sup> ratio in the samples. The low doping concentration (<0.5 mol.%) is mandatory as Ce<sup>3+</sup> ions, doping ions responsible for photoluminescent (PL) properties, must be diluted in the matrix to avoid PL quenching through energy transfers between near neighbors Ce cations (1 mol% in YAG, i.e.  $Y_{2.97}Ce_{0.03}AI_5O_{12}$ ).

**<u>Results</u>**: The oxidation state of cerium ions during the nano-YAG:Ce synthesis was successfully modified by bubbling a gas in the precursor solution, prior to solvothermal synthesis. Indeed, when bubbling a reducing gas (Ar/H<sub>2</sub>), the Ce<sup>3+</sup>:Ce<sup>4+</sup> ratio is of 71:29 whereas when bubbling O<sub>2</sub>, it is 64:36 (**Figure 1**). These key results are reported in a paper, submitted at the end of January [3].

In addition, on single-crystals, we showed that  $Ce^{3+}$ , $Mg^{2+}$ -codoped compounds ( $Gd_3Al_2Ga_3O_{12}$ ), the proportion  $Ce^{3+}$ : $Ce^{4+}$  is 75:25, whereas with no codopant ( $Ce^{3+}$ -doped  $Gd_3Al_2Ga_3O_{12}$  and  $Lu_3Al_5O_{12}$ ) only  $Ce^{3+}$  is present. The reason for this difference is the presence of  $Mg^{2+}$  ions which play the role of charge compensators. These results are reported in a publication [4].


## Conclusions & perspectives:

Regarding nano-YAG:Ce, we proved, for the first time, that it is possible to modify the Ce<sup>3+</sup>:Ce<sup>4+</sup> ratio in the nanocrystals by bubbling a gas in the precursor solution. In addition, this bubbling induces heterogeneous nucleation of YAG:Ce nanocrystals, leading to a size increase of these nanocrystals [3].

Regarding  $Gd_3Al_2Ga_3O_{12}$  and  $Lu_3Al_5O_{12}$  single-crystals, we showed that, when adding codoping ions such as  $Li^+$  and  $Mg^{2+}$ , the cerium oxidation was modified through charge compensation: in codoped crystals, the proportion of  $Ce^{4+}$  is increased, explaining their better performances in scintillation, where  $Ce^{4+}$  is favorable than  $Ce^{3+}$  [4].

## **References cited:**

[1] G. Dantelle et al. *RSC Advances* (2018) [2] Testemale D. et al. (2005) *Rev. Sci. Instrum.* 76, 043905-043909, [3] A. Cantarano et al [4] G. Dantelle et al. *Physica Status Solidi B: Basic Solid State Physics* (2019)



**Figure 1:** (a) XANES spectra of the standards used for the linear combination (b) XANES spectra of the nanophosphors obtained after Ar/H2 or O2 gas bubbling. (c) Zoom on the peaks characteristics of Ce3+ absorption (at 5725 eV) and of Ce4+ absorption (at 5738 eV). The Ce3+:Ce4+ ratio is indicated for each sample.