EUROPEAN SYNCHROTRON RADIATION FACILITY

INSTALLATION EUROPEENNE DE RAYONNEMENT SYNCHROTRON

Experiment Report Form

ESRF	Experiment title: High-pressure instability of hcp-structured Os—Pt	Experiment number: HC-3940		
Beamline:	Date of experiment:	Date of report:		
ID15B	from:03.11.2018 to:07.11.2018	12.08.2019		
Shifts:	Local contact(s):	Received at ESRF:		
9	Dr. Michael Hanfland			
Names and affiliations of applicants (* indicates experimentalists):				
*Dr. Kirill Yus	senko (applicant, experimentalist), Swansea University, UK			
*Saiana Khandarkhaeva (applicant, experimentalist), Universität Bayreuth, Bayerisches Geoinstitut				
*Dr. Maxim Bykov (experimentalist), Universität Bayreuth, Bayerisches Geoinstitut				

Report:

We collected room temperature data for several incompressible platinum group alloys up to 45 GPa in Ne as pressure-transmitting media. We obtained precise parameters of the the equations of state for several fcc- and hcp-structured Ir, Rh, Pt, Pd and Ru binary alloys:

Composition (max. P)	V_0/Z , Å ³ ·atom ⁻¹ P = 1 bar) ^b	V_0/Z , Å ³ ·atom ⁻¹ According to Zen's rule	<i>B</i> ₀ , GPa / <i>B</i> ₀ '
fcc-Ir _{0.50} Pt _{0.50} (up to 15 GPa)	14.60(1)	14.625	321(10) / 6.2(5)
fcc-Pd _{0.50} Rh _{0.50} (up to 45 GPa)	14.18(2)	14.224	222(7) / 5.1(4)
fcc-Pt _{0.33} Rh _{0.67} (up to 47 GPa)	14.210(3)	14.180	259(1) / 6.7(1)
fcc-Ir _{0.67} Ru _{0.3} (up to 46 GPa)	14.050(1)	13.964	332(2) / 5.4(1)
hcp-Ir _{0.25} Ru _{0.75} (up to 46 GPa)	13.773(1)	13.720	316(1) / 5.1(1)

Our study suggest regularities in compressibility parameters of refractory ultra-incompressible metals (see figure below). Nevertheless, hcp-Ir_{0.25}Ru_{0.75} and fcc-Ir_{0.67}Ru_{0.33} binary alloys have higher compressibility in comparison with pure metals.

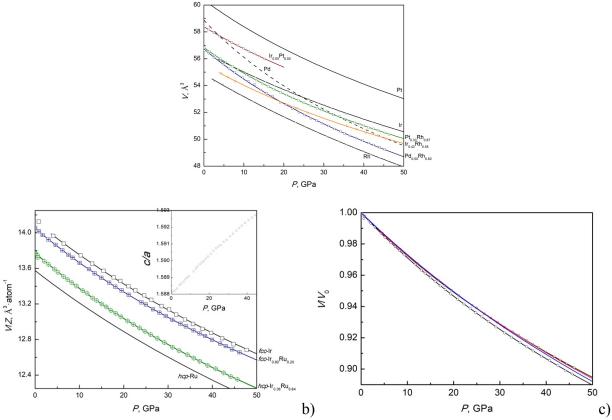


Figure. Room temperature pressure compressibility curves for fcc-structured alloys (a) as well as for hcp-Ir_{0.25}Ru_{0.75} and fcc-Ir_{0.67}Ru_{0.33} binary alloys (b and c) and pure metals in V/Z vs. P(b) and $V/V_0 vs$. P(c) scales (*inset* shows pressure dependence of c/a value for hcp-Ir_{0.25}Ru_{0.75}).

We are now drafting two publications where we are going to summarize all experimental data obtained:

- 1. Yusenko, Martynova, Khandarkhaeva, Bykov, Hanfland, Gromilov, Dubrovinsky (2019): High-pressure high-temperature properties of synthetic analogous of binary iridium–ruthenium and ternary iridium– osmium–ruthenium minerals prepared from single-source multimetallic precursors, J. Alloys Compounds, in preparation.
- 2. Yusenko, Khandarkhaeva, Bykov, Hanfland, Gromilov, Yusenko, Dubrovinsky (2019): Equations of state for fcc-structured refractory ultraincompressible alloys, J. Alloys Compounds, in preparation.