ESRF	Experiment title: Microscopic investigation of the Johari-Goldstein relaxation in metallic glasses	Experiment number: HC-3975
Beamline:	Date of experiment:	Date of report:
ID18	from: 28/12/2018 to: 03/12/2018	
Shifts:	Local contact(s):	Received at ESRF:
18	Yuriy Chushkin	
Names and affiliations of applicants (* indicates experimentalists):		
Federico Caporaletti ^{1,*}		
Wei-Hua Wang ²		
Beatrice Ruta ^{3,*}		
Francesco Dallari ^{4,*}		
Giulio Monaco ^{1,*}		
¹ Dipartimento di Fisica, Università degli studi di Trento, Trento, Italy.		
² Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.		
³ Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France.		
⁴ Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany.		

Report:

Figure 1: Correlation function probed by XPCS on "hyperquenched" $La_{40}Ni_{15}Al_{15}$ sample at T=300 K and q=21 nm⁻¹: a clear compressed (that is faster than exponential) decay, sign of stress-driven dynamics, is clearly visible.

The aim of the experiment was wide-angle use X-rays to photon correlation spectroscopy (XPCS) to investigate the microscopic dynamics of the rare-hearth based MG $La_{70}Al_{15}Ni_{15}$, which is known to have a pronounced Johari-Goldstein (JG) relaxation [1], at least according to macroscopic measurements. We decided to **XPCS** for employ our investigations because it has been recently established the capability of photon correlation spectroscopy experiments with visible light to measure the JG relaxation [2] and we wanted to extend this observation to the

microscopic length scale using synchrotron radiation.

Furthermore XPCS allows to follow slow microscopic dynamics (>1s) and so it is more than suitable to adress relaxation processes at and below the glass-transition temperature. In fact the only microscopic information available on the JG-relaxation are at the ns-us timescale [3]. The

Figure 2: Correlation function probed by XPCS on an "annealed" $La_{40}Ni_{15}Al_{15}$ sample at T=300 K and q=21 nm⁻¹: a clear compressed (that is faster than exponential) decay, sign of stress-driven dynamics, is again clearly visible.

XPCS measurments were performed well below the glass-transition temperature T_g (473 K) and in both ascast and annealed samples. The JG-relaxation is indeed extremely sensitive to the history of thermal the sample [4]. In other words aimed, with we such thermal protocol to reduce the internal stresses and increase the associated relaxation time, so that the Johari-Goldstein could be observed inside the probe time-window.

However, we did not succeed to slows down enough the stress driven dynamics.

In fact, as it is shown in Fig. 1 and Fig. 2, we

noticed that, indepentently of the thermal protocol, the sample dynamics was still stress-driven, as signaled by the "compressed" (faster than exponential) decay of the extracted correlation functions [5]. Therefore it was not possible to observe the quasi-equilibrium dynamics associated to the glass-transition. The stress-driven, intermittent dynamics of the sample was instead investigated in detail in a wide range of scattering vectors and temperatures across the liquid-to-glass transition region. The data-analysis is still on-going and, in particular, we are working on the extraction of high-order correlation functions in order to characterize the intermittent dynamics characteristic of metallic glasses below their glass-transition temperature.

References:

- [1] G. P. Johari et al., J. Chem. Phys, 53, 2372 (1970);
- [2] J. Gabriel et al., J. Phys. Chem. B 121, 8847 (2017);
- [3] F. Caporaletti et al., Sci. Rep. 9 (1), 1-10 (2019);
- [4] K. L. Ngai, Springer, New York (2011).
- [5] Z. Evenson, Phys. Rev. Lett. 115, 175701 (2015);