ESRF	Experiment title: Magnetic and electronic phase transitions in the multiferroic $RFe_3(BO_3)_4$ ($R = Nd$, Gd , Ho) crystals at the high pressures and low temperatures	Experiment number: HC-4507
Beamline: ID-18	Date of experiment: from: 13.04.2021 to: 19.04.2021	Date of report : 07/06/2021
Shifts:	Local contact(s): CHUMAKOV Alexander	Received at ESRF:

Names and affiliations of applicants (* indicates experimentalists):

Frolov Kirill*, Starchikov Sergey*, Zayakhanov Vladimir*

FRSC "Crystallography and Photonics" RAS

Report:

The goal of the project was to study the magnetic and electronic phase transitions in the $GdFe_3(BO_3)_4$ syngle crystals induced by high-pressures and cryogenic temperatures by the Synchrotron Mössbauer Spectrometry (SMS) on the Fe-57 nucleis.

We have successfully collected sets of SMS spectra of the $GdFe_3(BO_3)_4$ Fe-57 isotope enriched single crystal in the Diamon Anvil Cell (DAC) under pressure till to 73 GPa in the temperature range 2.5 - 295 K. All the data were obtained in the ESRF membrane DAC.

Figure 1. (a) – original $Gd^{57}Fe_3(BO_3)_4$ single crystal; (b) – small part of original $Gd^{57}Fe_3(BO_3)_4$ single crystal in the DAC at P=0.3 GPa; (c) – (h) – synchrotron Mössabuer spectra of the $Gd^{57}Fe_3(BO_3)_4$ single crystal in the DAC at some pressures and temperatures.

A preliminary analysis of the experimental data obtained confirmed the existence of two phase transitions at pressures of about 30 GPa and 50 GPa, with a change in the state of iron Fe³⁺ ions from high-spin to low-spin and complete suppression of magnetic ordering at pressures above 50 GPa. A complete data analysis is in progress. The quality and volume of the collected data seems to be sufficient to reach the scientific goals of proposal but only for the GdFe₃(BO₃)₄ Fe-57 enriched compound. It seems necessary to continue the high pressure SMS measurements for NdFe₃(BO₃)₄ and HoFe₃(BO₃)₄ single crystals Fe-57 isotope enriched.