
ESRF	Experiment title: Characterization of novel lanthanum nitrides	Experiment number: CH-6091
Beamline:	Date of experiment:	Date of report:
ID12	from: 01.12.2021 to: 06.12.2021	21.02.2022
Shifts:	Local contact(s):	Received at ESRF:
15	Fabrice Wilhelm	
Names and affiliations of applicants (* indicates experimentalists): Andrii Aslandukov*—Department of Crystallography, University of Bayreuth		

Report:

The aim of the spectroscopy part of this proposal was to determine the oxidation state of lanthanum in the novel LaN_2 phase by XANES to check the preliminary conclusion of unusual La^{2+} oxidation state made from crystal-chemistry analysis of LaN_2 structure.

All sample preparation was done at our home laboratory in Bayreuth. The planned preparation of diamond anvil cell (DAC) with special purchased mini-diamonds for XANES measurements (thickness of 0.5 mm) was not successful (diamonds broke during the nitrogen gas-loading). Hence, DAC equipped with standard diamonds (thickness of 1.5 mm) composed of LaN₂ sample at 25 GPa, which was studied before at X-ray diffraction beamline was used to investigate LaN₂ sample. Usually, such thick diamonds do not allow to measure La L_{III} -edge due to the low transmission of the diamond at such energies. Therefore, backup DAC#2 was prepared containing laser-heated Yb piece embedded in molecular nitrogen at 50 GPa. The DAC#2 was previously studied at X-ray diffraction beamline, where a mixture of two new Yb-N phases with unique N₈ nitrogen units and N₆ rings respectively were found. Ytterbium could possess two typical Yb²⁺ and Yb³⁺ oxidation states, that's why this sample is also an interesting case for XANES spectroscopy. A grand total of two diamond anvil cells and three reference samples (La₂O₃, Yb₂O₃ powders and Yb metal piece) were brought to ID12 beamline.

Figure. 1. a) La L_{II} edge XANES spectra of LaN₂ sample at 25 GPa and La₂O₃ reference sample at ambient conditions. b) Yb L_{III} edge XANES spectra of "Yb-N" sample at 50 GPa and Yb and Yb₂O₃ reference samples at ambient conditions.

After setting up the ID12 beamline and many attempts to optimize it for lanthanum XANES highpressure measurements we managed to get—though weak—the La L_{II} -edge XANES signal from LaN₂ sample in the DAC. The comparison of the collected spectrum with La₂O₃ reference sample spectrum revealed the oxidation state of +3 for lanthanum in LaN₂ (Fig. 1a). This result refutes the hypothesis about the unusual La²⁺ oxidation state and shows that instead the nitrogen species should have unusual charge states in the LaN₂ structure. We had enough time to study backup DAC#2 cell with Yb-N sample. As long as Yb $L_{II,III}$ absorption edge energies are higher than La $L_{II,III}$ edge energies the diamond transmission is higher which results in the much better quality of high-pressure XANES signal. The analysis of Yb L_{III} edge XANES spectra of Yb-N sample at 50 GPa, Yb (Yb²⁺ spectroscopy standard) and Yb₂O₃ (Yb³⁺ spectroscopy standard) reference samples clearly demonstrated that both Yb-N phases contain only Yb³⁺. This result will help to shed the light on the charge state of exotic N₈ and N₆ nitrogen units.

The results of this beamtime together with previously obtained X-ray diffraction data should result in two scientific publications.