Report on HC 4658

Pressure-induced condensation of organic anhydrides

Experimental

High-pressure experiments were performed using a membrane-driven diamond-anvil cell (DAC).¹ Three experiments were performed:

- 1. Two polymorphs of 2,3-diphenyl maleic acid anhydride (α -DPMA and β -DPMA)
- 2. Dimethylmaleic dianhydride
- 3. Maleic anhydride

were placed separately inside the pre-indented steal gaskets (Fig. S1). Subsequently, the DAC was filled with helium as a hydrostatic pressure transmitting medium. Pressure was calibrated using a ruby fluorescence method.^{2,3} In situ high-pressure single-crystal synchrotron X-ray diffraction experiments were performed at beamline ID15B at the European Synchrotron Radiation Facility in Grenoble (France). A collimated monochromatic beam ($\lambda = 0.41077$ Å) was used. The data collection strategy was a single ω -scan ±32°. The CrysAlisPro software⁴ was utilized for collecting diffraction data and their reduction. The crystal structures were solved with program Shelxt⁵ and refined by least-squares with Shelxl⁶ by using Olex2 software.⁷ Structural drawings were prepared using Mercury program.⁸ Herein only processed and analysed data for DPMA will be presented. Preliminary studies on maleic anhydride proved an existence of a phase transition (in contrary to literature reports). Dimethylmaeicx anhydride was stable up to 6 GPa, without a phase transition.

Results and discussion

As a result of single-crystal synchrotron X-ray diffraction measurements, the high-pressure crystal structure of α -DPMA and β -DPMA has been determined up to 12.29 GPa. The compressibility plots of α - and β -DPMA are shown in Figure 1. Unit-cell parameters are presented in Table 1 and Table 2.

Figure 1. Compression of the unit-cell parameters with increasing pressure for (a) α -DPMA; and (b) β -DPMA, in relation to the average unit-cell dimensions (a_0 , b_0 , c_0 , V_0) at atmospheric pressure. The estimated standard deviations (ESDs) are smaller than the symbols.

pressure (GPa)	<i>a</i> (Å)	b (Å)	c (Å)	$V(\text{\AA}^3)$	Z/Z'
0.39	18.8413(19)	13.016(3)	19.5156(19)	4786.1(13)	16/2
0.68	18.7082(13)	12.748(2)	19.3964(13)	4625.8(9)	16/2
1.01	18.6090(14)	12.532(2)	19.3103(13)	4503.2(9)	16/2
1.30	18.5396(12)	12.383(2)	19.2418(12)	4417.4(8)	16/2
1.59	18.4805(13)	12.256(2)	19.1882(12)	4346.1(8)	16/2
1.95	18.4169(10)	12.1227(16)	19.1295(9)	4270.9(6)	16/2
2.31	18.3470(10)	12.0029(17)	19.0756(10)	4200.8(7)	16/2
2.95	18.2778(11)	11.8657(17)	19.0166(10)	4124.3(7)	16/2
3.14	18.2406(9)	11.7915(14)	18.9819(8)	4082.7(6)	16/2
3.66	18.1815(9)	11.6848(15)	18.9273(9)	4021.1(6)	16/2
4.38	18.0953(9)	11.5249(14)	18.8492(8)	3930.9(5)	16/2
5.24	18.0189(10)	11.3833(17)	18.7789(8)	3851.8(6)	16/2
5.75	17.9722(12)	11.2989(14)	18.7274(9)	3802.9(6)	16/2
6.39	17.9207(9)	11.2118(14)	18.6787(8)	3753.0(5)	16/2
7.22	17.8624(9)	11.1108(14)	18.6195(9)	3695.3(5)	16/2
8.01	17.8005(8)	11.0119(13)	18.5584(8)	3637.8(5)	16/2
8.75	17.7483(7)	10.9243(11)	18.5124(7)	3589.3(4)	16/2
9.32	17.7138(8)	10.8699(11)	18.4801(7)	3558.3(4)	16/2
9.95	17.6800(8)	10.8161(10)	18.4417(6)	3526.6(4)	16/2

Table 1. Selected crystallographic data of α-DPMA with increasing pressure.

10.73	17.6398(7)	10.7553(10)	18.3977(7)	3490.4(4)	16/2
11.45	17.5910(7)	10.6903(11)	18.3509(7)	3450.9(4)	16/2
12.29	17.5388(7)	10.6084(10)	18.2975(7)	3404.4(4)	16/2

a (Å) **b** (Å) c (Å) $V(Å^3)$ Z/Z'pressure (GPa) $\boldsymbol{\beta}\left(^{\circ}\right)$ 0.39 15.042(9) 5.8818(4) 13.7004(11) 101.96(2) 1185.8(7) 4/10.68 14.916(6) 102.405(17) 4/15.8175(3) 13.5664(8) 1149.7(5) 1.01 14.810(6) 13.4467(8) 102.772(16) 1119.3(5) 4/15.7628(3) 1.30 14.724(6) 5.7299(3) 13.3800(8) 102.982(18) 1100.0(5) 4/11.59 14.661(5) 5.6974(2) 13.3088(8) 103.181(16) 1082.4(4) 4/11.95 4/114.587(5) 5.6643(2) 13.2382(8) 103.385(16) 1064.1(4) 2.31 14.521(5) 13.1708(8) 103.552(14) 1047.2(3) 4/15.6322(2) 2.95 14.429(5) 5.5996(2)13.0993(7) 103.725(15) 1028.2(3) 4/114.120(5) 5.5974(3) 1011.3(4) 4/13.14 12.8042(6) 92.088(12) 4/1 3.66 14.020(5) 5.5844(3) 12.7370(8) 92.283(13) 996.4(3) 4.38 17.562(3) 5.7546(2) 47.943(6) 91.025(14) 4844.3(9) 20/55.24 17.3110(15) 5.74710(10) 47.729(4) 91.377(9) 4747.1(6) 20/55.75 17.1698(15) 5.74040(10) 47.593(4) 91.530(9) 4689.2(6) 20/56.39 17.0129(15) 5.73290(10) 47.452(3) 91.719(8) 4626.1(5) 20/5 7.22 5.75420(10) 47.350(4) 93.600(10) 4551.1(6) 20/516.7367(18) 8.01 16.5598(14) 5.74610(10) 47.185(3) 93.865(8) 4479.7(5) 20/58.75 16.4195(14) 5.73560(10) 47.060(3) 94.142(8) 4420.4(5) 20/59.32 5.72990(10) 46.969(3) 94.256(8) 20/516.3257(14) 4381.6(5) 9.95 16.2293(14) 5.72360(10) 46.885(3) 94.397(9) 4342.3(5) 20/510.73 16.1208(12) 5.71490(10) 46.772(3) 94.570(7) 4295.4(4) 20/5

Table 2. Selected crystallographic data of β -DPMA with increasing pressure.

As previously reported, the α -polymorph crystallizes in the orthorhombic space group *P*bca with two symmetry independent molecules (Z' = 2).⁹ The structure is composed of alternating layers A and B, parallel to the (010) plane (Fig. S2). There are eight A and eight B molecules in the unit cell. For α -DPMA, up to 12.29 GPa, we did not observe a phase transition. The α -DPMA crystal is most compressed along [y], while the compression of the crystal along [x] and [z] are similar (Fig. 1a). This can also be seen in the projections of the unit-cell (Fig. 2); there are free spaces along the b-axis that allow the greatest compression in that direction.

Figure 2. Arrangements of α -DPMA molecules in the unit-cell along direction: (a) [100]; (b) [010]; and (c) [001], at 0.394 GPa.

 β -DPMA crystallizes in the monoclinic space group $P2_1/c$ with one symmetryindependent molecule in the unit-cell (Z' = 1). Initially, the compression of the crystal in all three directions is similar. Between 3.70 and 4.35 GPa, it undergoes a phase transition. Interestingly, at approximately 3 GPa we observed a sudden decrease in the β -angle, while the other parameters do not change significantly. This point starts the phase transition region (Fig. 1b). The transition results in a more than 3-fold extension of the c-edge, and an almost 5-fold increase of the unit-cell volume. The number of independent molecules (Z') increases from 1 to 5 (Fig. S3). The space group remains the same, that is $P2_1/c$. Between pressures 6.39 and 7.22 GPa, there is also a significant increase in β -angle with an abnormal b-axis elongation. This is related to the change in the packing of molecules in a unit cell and an increase in topological connectivity. Above 7.22 GPa, the hydrogen bond chains become more branched.

In α -DPMA intermolecular carbonyl-carbonyl (C=O···C=O) interactions are observed, but are not found in β -DPMA (Fig. 3). Previous studies have shown that carbonyl-carbonyl interactions can not only control the geometries of small molecules but also play a significant role in determining the three dimensional structures of proteins, polyesters, and peptides.^{10–14} C=O···C=O interaction is characterized by a short O···C distance of less than 3.22 Å (sum of van der Waals radii of carbon and oxygen atoms).¹⁵ As the pressure increases, the CO···CO interactions get stronger, initially more intense and then progressively weaker (Fig. 3b). In α -DPMA, we have identified a structural motif in which one carbonyl group is located above other carbonyl group in an "L- shape" with C=O···C=O dihedral angles (T) close to 90°.¹⁶ There is one-sided interaction where one carbonyl donates and the other carbonyl accepts, only one of the pair of O···C distance is smaller than 3.22 Å (d₁ and d₃).

Figure 3. (a) Four α -DPMA molecules with carbonyl-carbonyl (CO···CO) interactions; (b) closest C=O···C=O distances plotted as a function of pressure. The ESDs are smaller than the plotted symbols. The horizontal dashed line indicates the sums of van der Waals radii.¹⁵

References

- (1) Letoullec, R.; Pinceaux, J. P.; Loubeyre, P. The Membrane Diamond Anvil Cell: A New Device For Generating Continuous Pressure And Temperature Variations. *High Press. Res.* **1988**, *1* (1), 77–90. https://doi.org/10.1080/08957958808202482.
- (2) Forman, R. A. .; Piermarini, G. J. .; Barnett, J. D.; Block, S. Pressure Measurement Made by the Utilization of Ruby Sharp-Line Luminescence. *Science* (80-.). **1972**, 176 (4032), 284–285.
- (3) Piermarini, G. J.; Block, S.; Barnett, J. D.; Forman, R. A. Calibration of the Pressure Dependence of the R1 Ruby Fluorescence Line to 195 Kbar. J. Appl. Phys. 1975, 46 (6), 2774–2780. https://doi.org/10.1063/1.321957.
- (4) Rigaku Oxford Diffraction. CrysAlisPro Software System.
- (5) Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination. *Acta*
- *Crystallogr. Sect. A Found. Crystallogr.* 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053273314026370.
 Sheldrick, G. M. Crystal Structure Refinement with SHELXL . *Acta Crystallogr. Sect. C Struct. Chem.*
- 2015, 71 (1), 3–8. https://doi.org/10.1107/s2053229614024218.
 (7) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. *J. Appl. Crystallogr.* 2009, 42 (2), 339–341. https://doi.org/10.1107/S0021889808042726.
- Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; Van De Streek, J. Mercury: Visualization and Analysis of Crystal Structures. *J. Appl. Crystallogr.* 2006, 39 (3), 453–457. https://doi.org/10.1107/S002188980600731X.
- (9) Meents, A.; Kutzke, H.; Jones, M. J.; Wickleder, C.; Klapper, H. Polymorphs of 2, 3-Diphenyl Maleic Acid Anhydride and 2, 3-Diphenyl Maleic Imide: Synthesis, Crystal Structures, Lattice Energies and Fluorescence. Zeitschrift für Krist. - Cryst. Mater. 2005, 220 (7), 626–638.
- (10) Newberry, R. W.; Raines, R. T. A Key N→π* Interaction in N -Acyl Homoserine Lactones. ACS Chem. Biol. 2014, 9 (4), 880–883. https://doi.org/10.1021/cb500022u.
- (11) Newberry, R. W.; Bartlett, G. J.; VanVeller, B.; Woolfson, D. N.; Raines, R. T. Signatures of $N \rightarrow \pi^*$ Interactions in Proteins. *Protein Sci.* **2014**, *23* (3), 284–288. https://doi.org/10.1002/pro.2413.
- (12) Bolton, W. The Crystal Structure of Triketoindane (Anhydrous Ninhydrin). A Structure Showing Close C O ... C Interactions. *Acta Crystallogr.* **1965**, *18* (1), 5–10. https://doi.org/10.1107/s0365110x65000026.
- (13) Bartlett, G. J.; Newberry, R. W.; Vanveller, B.; Raines, R. T.; Woolfson, D. N. Interplay of Hydrogen Bonds and $n \rightarrow \pi^*$ Interactions in Proteins. *J. Am. Chem. Soc.* **2013**, *135* (49), 18682–18688. https://doi.org/10.1021/ja4106122.
- (14) Rahim, A.; Saha, P.; Jha, K. K.; Sukumar, N.; Sarma, B. K. Reciprocal Carbonyl-Carbonyl Interactions

in Small Molecules and Proteins. *Nat. Commun.* **2017**, *8* (1), 1–12. https://doi.org/10.1038/s41467-017-00081-x.

- (15) Bondi, A. Van Der Waals Volumes and Radii. J. Phys. Chem. **1964**, 68 (3), 441–451. https://doi.org/10.1021/j100785a001.
- (16) Sahariah, B.; Sarma, B. K. Relative Orientation of the Carbonyl Groups Determines the Nature of Orbital Interactions in Carbonyl-Carbonyl Short Contacts. *Chem. Sci.* 2019, *10* (3), 909–917. https://doi.org/10.1039/c8sc04221g.

Figure S1. DAC chamber during measurement at 0.394 GPa.

Figure S2. Arrangement of alternating layers of molecules A and B in the α -DPMA crystal in the direction [100].

Figure S3. Arrangements of β -DPMA molecules in the unit-cell at 0.394 GPa along direction: (a) [100]; (b) [001]; and (c) [001]; at 4.38 GPa along: (d) [100]; (e) [010]; and (f) [001] and at 7.22 GPa along (g) [100]; (h) [010]; and (i) [001].

Figure S4. β -DPMA in DAC chamber during the pressure measurements.

Table S1. Compressibility related to crystallographic axes calculated for α -DPMA with Birch-Murnaghan Coefficients in range between 0.394 GPa – 12.29 GPa.

Axes	K(TPa ⁻¹)	σ <i>K</i> (TPa ⁻¹)	Direction			Empirical parameters			
			а	b	с	80	λ	Pc	v
X_1	11.4072	0.0646	0.0000	-1.0000	0.0000	1.9448e-01	-2.2679e-01	-0.0853	0.2046
X_2	4.5252	0.0205	-1.0000	0.0000	0.0000	1.8227e-02	-3.2488e-02	0.1572	0.3948
Хз	4.2038	0.0203	0.0000	0.0000	1.0000	5.2632e-03	-1.9316e-02	0.3200	0.5038
V	23.3844	2.0035							

Birch-Murnaghan Coefficients

	B ₀ (GPa)	σB_0 (GPa)	V_0 (Å ³)	σV_0 (Å ³)	B '	σΒ'	P_c (GPa)
2^{nd}	20.0738	0.8492	4660.0064	31.0035	4	n/a	0
3 rd	6.7744	0.9413	4957.6126	41.4243	10.1028	0.9582	0

Table S2. Compressibility related to crystallographic axes calculated for β -DPMA with Birch-Murnaghan Coefficients in range between 0.394 GPa - 3.659 GPa.

•	K(TPa ⁻¹)	σ <i>K</i> (TPa ⁻¹)	Direction		Empirical parameters				
Axes			а	b	с	80	λ	Pc	v
X_1	47.7825	10.5210	0.6256	0.0000	0.7802	-7.9386e-03	-1.5379e-02	0.3940	1.8214
X_2	10.5029	0.5754	0.0000	-1.0000	0.0000	1.2888e+01	-1.2908e+01	-0.0410	0.0019
<i>X</i> ₃	-9.0328	13.5714	0.7421	0.0000	-0.6703	-1.7238e-02	1.5261e-04	0.3940	4.8480
\boldsymbol{V}	47.9033	4.1015							

Birch-Murnaghan Coefficients

$B_0 (\text{GPa}) \sigma B_0 (\text{GPa}) V_0 (\text{A}^3) \sigma V_0 (\text{A}^3) B' \sigma B' P_c (\text{GPa})$	B ₀ (GPa)	σB ₀ (GPa)	V_0 (Å ³)	σV_0 (Å ³)	B '	σΒ'	P_c (GPa)
---	-----------------------------	-----------------------	-------------------------	--------------------------------	------------	-----	-------------

2 nd	12.8585	0.7222	1204.1769	7.1979	4	n/a	0
3 rd	5.9240	3.0486	1243.1825	27.7639	10.7501	5.0601	0

Table S3. Compressibility related to crystallographic axes calculated for a new phase of β -DPMA with Birch-Murnaghan Coefficients in range between 4.38 GPa – 10.73 GPa.

			Direction		Empirical parameters				
Axes A(IPa ⁻)	K(TPa ⁻¹)	on(IFa ⁻)	а	b	с	80	λ	P_{c}	v
X_1	13.4378	1.2935	-0.9850	0.0000	-0.1723	6.4282e+00	-6.2300e+00	-0.5672	0.0193
X_2	1.5880	0.8209	0.7860	0.0000	-0.6183	1.0291e-02	-1.2781e-06	-24.003	2.7520
<i>X</i> 3	1.1345	0.9193	0.0000	1.0000	0.0000	-1.6164e-03	-3.6831e-06	4.3800	3.9534
\boldsymbol{V}	18.0251	0.7245							

Birch-Murnaghan Coefficients

	B ₀ (GPa)	σB_0 (GPa)	V_0 (Å ³)	σV_0 (Å ³)	B '	σΒ'	P_c (GPa)
2^{nd}	56.8636	14.0598	4971.6105	107.4852	4	n/a	0
3 rd	7.8839	6.4860	6049.8427	358.0922	9.1464	4.5192	0