| ESRF                                                                    | <b>Experiment title:</b><br>High-Temperature Mobility of Ce <sup>4+</sup> ions in Yttrium<br>Stabilized Zirconia Ceramics | Experiment<br>number:<br>20-01-825 |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Beamline:                                                               | Date of experiment:                                                                                                       | Date of report:                    |
| BM20 ROBL                                                               | from: 13/07/2021 to: 19/07/2021                                                                                           | 13/09/2021                         |
| Shifts:                                                                 | Local contact(s):                                                                                                         | Received at ESRF:                  |
| 18                                                                      | C. Hennig                                                                                                                 |                                    |
| Names and affiliations of applicants (* indicates experimentalists):    |                                                                                                                           |                                    |
| *SVITLYK Volodymyr, BM20 HZDR ROBL<br>*HENNIG Christoph, BM20 HZDR ROBL |                                                                                                                           |                                    |

## **Report:**

During the 20-01-825 experiment ten samples in the Ce-doped Yttrium Stabilized Zirconia (YSZ) system were studied *in situ* as a function of external temperature. Specifically, powder diffraction patterns the tetragonal  $(Ce_{0.000}Y_{0.140}Zr_{0.860}O_{2-x}, Ce_{0.030}Y_{0.136}Zr_{0.834}O_{2-x}, Ce_{0.060}Y_{0.132}Zr_{0.808}O_{2-x}, Ce_{0.090}Y_{0.127}Zr_{0.783}O_{2-x}, Ce_{0.120}Y_{0.123}Zr_{0.757}O_{2-x}) and cubic <math>(Ce_{0.000}Y_{0.250}Zr_{0.750}O_{2-x}, Ce_{0.030}Y_{0.243}Zr_{0.728}O_{2-x}, Ce_{0.060}Y_{0.235}Zr_{0.705}O_{2-x}, Ce_{0.090}Y_{0.228}Zr_{0.683}O_{2-x}, Ce_{0.120}Y_{0.220}Zr_{0.660}O_{2-x}) Ce-YSZ samples were collected in a <math>RT - 1150$  K - RT temperature range. Both Ce-YSZ families have been found to be structurally stable at high temperatures (Fig.1) and no discharge of Ce<sup>4+</sup> ions was observed (Fig. 2, Ce\_{0.060}Y\_{0.132}Zr\_{0.808}O\_{2-x} is shown as an example on both figures).

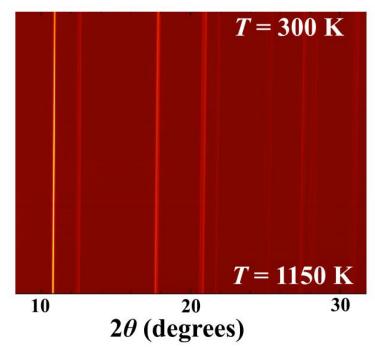



Fig. 1. Evolution of diffraction pattern of tetragonal  $Ce_{0.060}Y_{0.132}Zr_{0.808}O_{2-x}$  upon heating indicating absence of any structural transformations

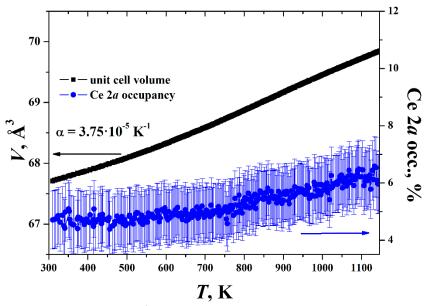



Fig. 2. Evolution of cccupancy of  $Ce^{4+}$  (blue) and unit cell volume (black) of  $Ce_{0.060}Y_{0.132}Zr_{0.808}O_{2-x}$  upon heating

These results are promising in a context of nuclear waste storage. In these phases  $Ce^{4+}$  species have been used as surrogate ions for tetravalent actinide elements like U, Th or Pu. Therefore, incorporated actinide elements in analogous YSZ phases are expected feature similar *T*-dependent behavior, i.e. strong affinity with the parent YSZ matrices. In addition, linear coefficients of thermal expansion have been obtained for all the samples. A corresponding scientific article is currently being written and will be submitted in 2021. Following this successful experiment further experiments as a function of external pressure are planned on these phases.