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Report: 
 
 
The aim of the this experiment was to study the viability of introducing an ultra-thin oxide layer at the interface 
between the ferromagnet and the semiconductor used on non-volatile memories with the objective of removing 
the large impedance mismatch present between ferromagnets and semiconductors that limits the spin injection 
from high conductive ferromagnetic material to high-resistive non-magnetic semiconductor. The ferromagnetic 
material provides a unique ability to switch rapidly their magnetization and the semiconductor provides a unique 
ability to modify its properties by doping, light or voltage. 
 
It is well known the ability of SiO2 to rapidly grow on the Si surface when the substrate is heated to evaporate 
the ferromagnetic material. Hence, in this experiment we explored the possibility of using the native SiO2 layer 
from Si(100) substrates to integrate Fe3O4 ferromagnetic oxide known the difficulty present in stabilizing 
extremely thin layers of SiO2 on silicon substrates while deposition of the ferromagnetic material. Also it is 
well known the ability of SiO2 to oxidize the interface of the ferromagnetic metal frustrating the magnetic 
contribution.  
 
We measured 3 samples grown by PLD, thin layers of Fe3O4 on Si(100)/SiO2 substrates (with dimensions 
10x10 mm2) formed by Si(substrate)/SiO2/Fe3O4 (8, 20 and 40 nm thick) by combination of X-ray Reflectivity, 
X-ray Diffracion and Hard X-Ray Photoelectron Spectroscopy. The samples showed an increase of the coercive 
field and saturation values as a function of Fe3O4 thickness as revealed by MOKE (See figure a). Standard XPS 
revealed the presence of pure Fe3O4 phase at the heterostructure surface. 
 
We performed X-ray reflectivity, X-ray Diffraction and Hard X-ray Photoelectron Spectroscopy measurements 
to find the physical properties of the buried Fe3O4/SiO2 interface and to be able to analyse the morphology of 
the SiO2 interface (layer thickness and interface roughness) and of the presence or absence of non-magnetic 
iron oxide phases or silicate phases. A complete compositional and electronic depth profile was performed by 



following the evolution of the photoemission signal from the Fe1s, Fe2p, Fe3s, Si1s and Si2p orbitals as a 
function of the photon energy, i.e., electron kinetic energy and hence sampling depth and a complete X-ray 
reflectivity pattern was obtained using 12 keV photons. 
 
In a first insight, we have seen a competitive interplay between silicon and iron oxidation. During the first stage 
of iron oxide evaporation the SiO2 thickness increased while the iron was unable to get fully oxidized. From a 
certain iron oxide thickness, the SiO2 layer is stabilized in thickness and the iron was fully oxidized. This is 
explained by oxygen transport through the iron layer. While the iron layer has low thickness, the oxygen is able 
to diffuse until the Si oxidizing its surface, forming SiO2 and avoiding oxidation of the iron. For larger iron 
layer thickness, the oxygen cannot travel through it, limiting the Si surface oxidation and enabling iron oxide 
formation. This scenario is shown in Figure b in which Si vs SiO2 HAXPES signal is represented for different 
iron oxide layer thickness. Taking into account the HAXPES, XRR and standard XPS measurements we 
determined a stabilized SiO2 thickness of 4.8 nm (See figure c) 
 

 
 
 
Further data analysis is needed to find the morphological, compositional and electronic correlation of this 
ultra-thin silicon oxide layers embedded at the interface between Fe3O4 and Si. 


