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Report: 
The first day was dedicated to the experimental setup and beamline alignment due to the complexity of the 
setup and measurement scheme. On the second day, we optimized radiation dose. The Nafion membrane of 
the fuel cell is very susceptible to radiation damage, especially at lower energies of 7keV, and that we need to 
control tightly the overal dose by severely limiting the measurement time. On the third day, we put a new 
sample in the fuel cell and use previously developed limited exposure measurement scheme, where the dose 
was kept to absolute minimum. This paid off well as we were able to not only proved the depth profiling 
concept but also acquired publication-quality data, which summary is below. 
 
This experiment aims to track dissolved nickel ions in the fuel cell and find whether it ends up in the 
membrane/catalyst layer/gas diffusion layer or anode/cathode side. We have found that the required 
information can be obtained from the pre-edge region. Thus, in Figure 1, we show a linear combination fitting 
of the pre-edge region with three reference spectra: NiO (yellow), Ni foil (green), and NiSO4 solution in the 
Nafion membrane (purple). 
 
We identified the dissolution of Ni out of the catalyst layer; see Figure 1, first column. Figure 1a) shows 
spectra before the accelerated stress test (AST). A significant pre-edge feature is present and probably 
associated with Ni0 species (yellow). As we proceed with the AST, Ni leaches out of the catalyst, and Ni0 
species is oxidized to Ni2+. See a smaller contribution from Ni0 and an increase in contribution from  Ni2+ 
(purple) in Figure 1b). After 6k cycles, there are almost no Ni0 species. These spectra were measured with all 
five analyzers crystals to limit the dose and thus will not provide any depth information. The Ni2+ signal was 
identified by matching to the reference samples. The best match was mixture of two Ni2+ species: signal from 
the membrane which was soaked in Ni solution (large majority) and Ni2+ from NiO reference. (small minority) 
Interestingly, these were the only reference well matching the XAS spectra for Ni2+ species pointing to 
particular chemical environment of the Ni2+ in ionomer. In total we measured about 30 different references of 
compounds with different Ni oxidation state. 



 

 
The depth information was measured in subsequent steps. Once we dissolved nickel, we measured XANES 
with individual crystals. The geometry of analyzers crystals was set up so that crystal 5 (C5) is the most 
grazing (the most surface sensitive), with its center at only 13 deg from the sample plane. Crystal 1 (C1) was 
the least grazing (the least surface sensitive), with its center at 41 deg from the sample surface plane. Crystal 3 
(C3) was in between. Before we set the potential to draw current from the cell that would move Ni around, we 
measured spectra at open circuit potential (OCP), see Figures d), e), and f). We see an increased contribution 
of Ni2+ from NiO and Ni0 from Ni foil from C1 to C5. As expected, most of the metallic nickel and NiO are on 
the surface where the catalyst layer is. The strongest contribution from Ni2+ membrane species is found in the 
C1 and thus deeper in the sample, where the membrane is. Afterward, we holt a potential of 0.5 V to flow 
current to redistribute Ni within the sample. After 2h – Figure 1 g), h), i); the trend from C1 to C5 is similar 
with the most metallic nickel and NiO at the surface, but their ratios to Ni2+ in the membrane are lower. This 
suggests that the 2h-potential hold further dissolved Ni from the catalyst layer, which moved into the 
membrane. Afterward, we set the potential for 0.5 V for two more hours. Figure 1 i), k), l); shows data after 4h 
in total. Interestingly, the trend flips, and the most metallic nickel is present at C1 while C5 shows the least 
contribution of metallic nickel. This result strongly suggests a reduction of Ni2+ in the membrane to metallic 
nickel. Reduction through hydrogen crossover phenomenon is well described in the literature for platinum but, 
to our best knowledge, was never observed for Ni. Understanding of the Ni chemistry within the membrane to 
a such level shown here can potentially have large consequences for MEA design, as proton conductivity and 
the overall performance of the fuel cell is likely affected by those Ni species. 
 

 
 
Figure 1: A set of measurements fitted using a linear combination of reference spectra. Figures a) to c) are 
measured with all 5 crystals. a) is the beginning of life before the AST, b) is after 1k cycles of AST, and c) is 
after 6k cycles of AST. Ni dissolution is apparent. Spectra d), g), j) were measured with C1, spectra e), h), k) 
were measured with C3, and spectra f), i), l) were measured with C5.  
 
 
Overall, this experiment was successful as we proved that our inhouse XAS hydrogen fuel cell design delivers 
both high current densities and a sufficient Ni fluorescence signal. As we found that the information can be 
satisfactorily obtained from the pre-edge region, we can significantly improve the quality and speed of data 
acquisition in the future beamtimes. Use of the 2D detector will also allow simultaneous signal acquisition 
from different crystals, thus acquiring the depth information in one scan.  


