TANGO Device Server Programmer’s
Manual

Version 1.0

E. Taurel

April 4, 2001

Contents

1 Introduction
1.1 Introduction to device server i it e e e e
1.2 Device server history e e
2 Getting Started
2.1 The commands and attributes codein C++
2.1.1 The DevSimple command oo
2.1.2 The DevArray commando e e e
2.1.3 The DevString command
2.1.4 The DevStrArray command
2.1.5 The DevStruct command
2.1.6 The three attributes o
2.2 The commands and attributes codeinjava
2.2.1 The DevSimple command oo
2.2.2 The DevArray command
2.2.3 The DevString commando
2.2.4 The DevStrArray commando
2.2.5 The DevStruct command
2.2.6 The three attributes
3 The TANGO device server model
3.1 Imtroduction to CORBA e
3.2 Themodel. e e e e e e
3.3 Thedevice. o o o i e e e e e e e e e
3.3.1 Thecommands e
3.3.2 The CORBA attributes
3.3.3 The TANGO attributes
3.3.4 The remaining CORBA operations
3.4 The Server v o i i i e e e e e e e e e e e e e e e e e e
3.5 Thedatabase e e
3.6 The application programmers interfaceo oL L.
4 The device server framework
4.1 Naming convention and programming language
4.2 Thedevice pattern L L e
4.2.1 The Devicelmpl class. L
4.2.2 The DbDevice class o v i i e e e e e e e
4.2.3 The Commandclass
4.24 The DeviceClassclass i i i it it i e e
4.2.5 TheDbClassclass o . i i i i e e e e e
4.2.6 The MultiAttribute class
4.2.7 The Attribute class.

CONTENTS

4.2.8 The WAttribute class o e 33
4.2.9 The StepperMotor class L e e 33
4.2.10 The StepperMotorClass class o .o it i it 34
4.2.11 The DevReadPosition class 35
4.3 Startup of a device patterno 35
4.4 Command execution sequence oL e 36
4.5 The automatically added commands Lo L. 37
4.6 Reading/Writing attributes Lo Lo 38
4.6.1 Reading attributes o 38
4.6.2 Writing attributes o oo 38
4.7 The device server framework L L oL 38
4.7.1 Vocabulary 38
4.7.2 The DServer class 38
4.7.3 The Tango::Util class 39
4.7.4 A complete device servero 39
4.7.5 Device server startup seqUENCe ot e e e e e e e 40
Exchanging data between client and server using commands 41
5.1 Command data types. i e e e e 41
5.1.1 Using command data types with C++ 42
5.1.2 Using command data types with Java, 46
5.2 Passing data between client and server oL oL 48
5.2.1 C++4 mapping for IDL any type 49
5.2.2 The insert and extract methods of the Command class 50
5.2.3 Java mapping for IDL any typeo oL 51
5.2.4 The insert and extract methods of the Command class for Java 53
5.3 C++ memory management e e e et e e e e e e 54
5.3.1 Forstring e 54
5.3.2 For array/sequence 55
5.3.3 For string array/sequenceo 56
5.3.4 For Tango composed typeso 57
5.4 Reporting errors L 57
5.4.1 Example of throwing exception using C++ 58
5.4.2 Example of throwing exception using Java 58
Writing a device server 59
6.1 Understanding the device 59
6.2 Defining device commandso e e 61
6.2.1 Standard commands Lol e 61
6.3 Choosing device state oL e e e e 61
6.4 Device server utilities to ease coding/debugging L. 62
6.4.1 The device server verbose optiono 62
6.4.2 Device server output redirection 0oL 0oL 63
6.4.3 Usageexample 63
6.5 Avoiding name conflicts L. L 64
6.5.1 Using CH+ . . . o o it e e e 64
6.5.2 UsingJava 64
6.6 The device server main function o oo 64
6.6.1 Using CH++ e e 64
6.6.2 UsingJava e 65
6.7 The DServer::class _factory method (C++ specific) 66
6.8 Writing the StepperMotorClass class 67
6.8.1 Using CH+ . . . o o e e 67

6.8.2 UsingJava e 71

CONTENTS

6.9 The DevReadPositionCmd class
6.9.1 Using CH++ L L
6.9.2 UsingJava e

6.10 The StepperMotor class o . v i i i e e e e e e e e e e
6.10.1 Using CH++ o e e e e
6.10.2 Using Java e

6.11 Source files managementl

Device server under Windows

7.1 The Tango device server graphical interface
7.1.1 The device server main window
7.1.2 The console windowo
7.1.3 Thehelpwindow

7.2 MFC device Server i i i e e e e e e e e e e e e e e
7.2.1 The InitInstance method,
7.2.2 The Exitlnstance method,
7.2.3 Example of how to build a Windows device server MFC based

7.3 Win32 application L

7.4 Device server as NT service i it
7.4.1 Theserviceclass e e e
7.4.2 The main function
7.4.3 Service options and messageso e e e e e e e e e
7.4.4 Tango device server using MFC as Windows NT service

Compiling, linking and executing a TANGO device server process

8.1 Compiling and linking a C++ deviceserver
8.1.1 On UNIX like operating system
8.1.2 On Windows NT using Developer Studio

8.2 Running a C++ deviceservero

8.3 Compiling a Java device server Lo
8.3.1 Supported javarelease L.
8.3.2 Setting the CLASSPATH
83.3 Makefile
8.3.4 Tango core software release number oL oL

8.4 Running a Java deviceserver Lo

Advanced programming techniques

9.1 Receiving signal (C++ specific) L
9.1.1 Usingsignal L
9.1.2 Exiting a device server gracefully

9.2 Imheriting e
9.2.1 Using CH+ . . o v v i e e
9.2.2 UsingJava e

9.3 Using another device pattern implementation within the same server

Reference part

A1 Device parameter o e e e e e
A.11 Thedeviceblackbox
A.1.2 The device description field
A.1.3 The device state and status oo

A.2 Device class parametero oo e e e e

A3 Thedeviceblack box o e

A4 Automatically added commands Lo
A.41 The DevState commando e

Ab

A6

A7

CONTENTS

A.42 The DevStatus commando 120
DServer class device commands L. oo oo 121
A.5.1 The DevState command 121
A.5.2 The DevStatus command 121
A.5.3 The DevRestart command L. 121
A.5.4 The DevRestartServer command 121
A.5.5 The DevQueryClass command 121
A.5.6 The DevQueryDevice command 122
A.5.7 The DevKill commando 122
A.5.8 The DevSetTraceLevel command 122
A.5.9 The DevGetTraceLevel command 122
A.5.10 The DevSetTraceOutput command 122
A.5.11 The DevGetTraceOutput command 122
CH+specific o e e e e 122
A.6.1 The Tango master include file (tango.h) 122
A.6.2 Tango specific types L e e 123
A.6.3 Tango devicestatecode 124
A6.4 Tangodatatype o e e 125
Java specific L L e e 126

A71 Packages. o o e e 126

CONTENTS

Are you ready to dance the TANGO ?

CONTENTS

Chapter 1

Introduction

1.1 Introduction to device server

Device servers were first developed at the European Synchrotron radiation Facility (ESRF) for
controlling the 6 Gev synchrotron radiation source. This document is a Programmer’s Manual on
how to write TANGO device servers. It will not go into the details of the ESRF, nor its Control
System nor any of the specific device servers in the Control System. The role of this document is
to help programmers faced with the task of writing TANGO device servers.

Device servers have been developed at the ESRF in order to solve the main task of Control
Systems viz provide read and write access to all devices in a distributed system. The problem of
distributed device access is only part of the problem however. The other part of the problem is
providing a programming framework for a large number of devices programmed by a large number
of programmers each having different levels of experience and style.

Device servers have been written at the ESRF for a large variety of different devices. Devices
vary from serial line devices to devices interfaced by field-bus to memory mapped VME cards or
PC cards to entire data acquisition systems. The definition of a device depends very much on the
user’s requirements. In the simple case a device server can be used to hide the serial line protocol
required to communicate with a device. For more complicated devices the device server can be
used to hide the entire complexity of the device timing, configuration and acquisition cycle behind
a set of high level commands.

In this manual the process of how to write TANGO device servers will be treated. The manual
has been organised as follows :

e A getting started chapter.

The TANGO device server model is treated in chapter 3

The TANGO device server pattern and framework are described in chapter 4

Chapter 5 describes how to client and a device server exchange data

How to write a device server is explained in chapter 6

How to compile, link and execute a Tango device server is detailed in chapter 7

Advanced programming techniques for device server are described in chapter 8

Throughout this manual examples of source code will be given in order to illustrate what is meant.
The examples have been taken from the StepperMotor class - a simulation of a stepper motor which
illustrates how a typical device server for a stepper motor at the ESRF functions. The simulation
runs under HP-UX, Solaris, Linux and Windows-NT and requires no hardware in order to run.

9

10 CHAPTER 1. INTRODUCTION

1.2 Device server history

The concept of using device servers to access devices was first proposed at the ESRF in 1989. It
has been successfully used as the heart of the ESRF Control System for the institute accelerator
complex. This Control System has been named TACO!. Then, it has been decided to also used
TACO to control devices in the beam-lines. Today, more than 30 instances of TACO are running
at the ESRF. The main technologies used within TACO are the leading technologies of the 80’s.
The Sun Remote Procedure Call (RPC) is used to communicate over the network between device
server and applications, OS-9 is used on the front-end computers, C is the reference language to
write device servers and clients and the device server framework follows the MIT Widget model.
In 1999, a renewal of the control system was started. The new version of the ESRF control system
is named TANGO? and is based on the 21 century technologies :

e CORBA? to communicate between device server and clients
e C+-+ and Java as reference programming languages
e Linux, Solaris, HP-UX and Windows-NT as operating systems

e Modern object oriented design pattern

ITACO stands for Telescope and Accelerator Controlled with Objects
2TANGO stands for TAco Next Generation Object
3CORBA stands for Common Object Request Broker Architecture

Chapter 2

Getting Started

The code given in this chapter as example has been generated using POGO. Pogo is a code gener-
ator for Tango device server. See [13] for more information about POGO. The following examples
briefly describe how to write device class with commands which receives and return different
kind of Tango data types and also how to write device attributes The device class implements 5
commands and 3 attributes. The commands are :

e The command DevSimple deals with simple Tango data type

e The command DevString deals with Tango strings

e DevArray receive and return an array of simple Tango data type

e DevStrArray which does not receive any data but which returns an array of strings

e DevStruct which also does not receive data but which returns one of the two Tango com-
posed types (DevVarDoubleStringArray)

For all these commands, the default behaviour of the state machine (command allways allowed)
is acceptable. The attributes are :

e A spectrum type attribute of the Tango string type called StrAttr

e A readable attribute of the Tango::DevLong type called LongRdAttr. This attribute is
linked with the following writable attribute

e A writable attribute also of the Tango::DevLong type called LongWrAttr.

2.1 The commands and attributes code in C-++

For each command called DevXxxx, pogo generates in the device class a method named dev_ xxx
which will be executed when the command is requested by a client. In this chapter, the name of
the device class is DocDs

2.1.1 The DevSimple command

This method receives a Tango::DevFloat type and also returns a data of the Tango::DevFloat type
which is simply the double of the input value. The code for the method executed by this command
is the following:

11

12

{

O© 00N O WN =

10 }

CHAPTER 2. GETTING STARTED

Tango: :DevFloat DocDs::dev_simple(Tango: :DevFloat argin)

Tango: :DevFloat argout ;
coutl << "DocDs::dev_simple(): entering... !" << endl;

// Add your own code to control device here

argout = argin * 2;
return argout;

This method is fairly simple. The received data is passed to the method as its argument. It is
doubled at line 8 and the method simply returns the result.

2.1.2 The DevArray command

This method receives a data of the Tango::DevVarLongArray type and also returns a data of the
Tango::DevVarLongArray type. Each element of the array is doubled. The code for the method
executed by the command is the following :

1 Tango::DevVarLongArray *DocDs::dev_array(const Tango::DevVarLongArray *argin)

2 {

w

// POGO has generated a method core with argout allocation.

// If you would like to use a static reference without copying,
// See "TANGO Device Server Programmer’s Manual"

// (chapter x.x)

[/ = e e e e e e
Tango: :DevVarLongArray *argout = new Tango::DevVarLongArray();
coutl << "DocDs::dev_array(): entering... !" << endl;

// Add your own code to control device here

long argin_length = argin->length();

argout->length(argin_length) ;

for (int i = 0;i < argin_length;i++)
(xargout) [i] = (xargin) [i] * 2;

return argout;

The argout data array is created at line 8. Its length is set at line 15 from the input argument
length. The array is populated at line 16,17 and returned. This method allocates memory for the
argout array. This memory is freed by the Tango core classes after the data have been sent to
the caller (no delete is needed). It is also possible to return data from a statically allocated array
without copying. Look at chapter 5 for all the details.

2.1. THE COMMANDS AND ATTRIBUTES CODE IN C++ 13

2.1.3 The DevString command

This method receives a data of the Tango::DevString type and also returns a data of the Tango::DevString
type. The command simply displays the content of the input string and returns a hard-coded
string. The code for the method executed by the command is the following :

1 Tango::DevString DocDs: :dev_string(Tango: :DevString argin)

2 {

3 // POGO has generated a method core with argout allocation.
4 // If you would like to use a static reference without copying,
5 // See "TANGO Device Server Programmer’s Manual"

6 // (chapter x.x)

7 [mmmm
8 Tango: :DevString argout;

9 coutl << "DocDs::dev_string(): entering... !" << endl;

10

11 // Add your own code to control device here

12

13 cout << "the received string is " << argin << endl;

14

15 string str("Am I a good Tango dancer 7");

16 argout = new char[str.size() + 1];

17 strcpy (argout,str.c_str());

18

19 return argout;
20 %

The argout string is created at line 8. Internally, this method is using a standard C++ string.
Memory for the returned data is allocated at line 16 and is initialized at line 17. This method
allocates memory for the argout string. This memory is freed by the Tango core classes after the
data have been sent to the caller (no delete is needed). It is also possible to return data from a
statically allocated string without copying. Look at chapter 5 for all the details.

2.1.4 The DevStrArray command

This method does not receive input data but returns an array of strings (Tango::DevVarStringArray
type). The code for the method executed by this command is the following:

1 Tango::DevVarStringArray *DocDs::dev_str_array()

2 A

3 // POGO has generated a method core with argout allocation.

4 // If you would like to use a static reference without copying,
5 // See "TANGO Device Server Programmer’s Manual"

6 // (chapter x.x)

7 [= m

8 Tango: :DevVarStringArray xargout = new Tango::DevVarStringArray();
9

10 coutl << “Doch::dev_str_array(): entering... !" << endl;

11

12 // Add your own code to control device here

14

13
14
15
16
17
18
19
20

CHAPTER 2. GETTING STARTED

argout->length(3);

(*argout) [0] = CORBA::string_dup("Rumba");
(*argout) [1] = CORBA::string_dup("Waltz");
string str("Jerck");

(*argout) [2] = CORBA::string_dup(str.c_str());
return argout;

The argout data array is created at line 8. Its length is set at line 14. The array is populated
at line 15,16 and 18. The last array element is intialized from a standard C++ string created at
line 17. Note the usage of the string dup function of the CORBA namespace. This is necessary
for strings array due to the CORBA memory allocation schema.

2.1.5 The DevStruct command

This method does not receive input data but returns a structure of the Tango::DevVarDoubleStringArray
type. This type is a composed type with an array of double and an array of strings. The code for
the method executed by this command is the following:

O ~NO O WN -

Tango: :DevVarDoubleStringArray *DocDs: :dev_struct()

{

// POGO has generated a method core with argout allocation.

// If you would like to use a static reference without copying,

// See "TANGO Device Server Programmer’s Manual"

// (chapter x.x)

[mm

Tango: :DevVarDoubleStringArray *argout = new Tango::DevVarDoubleStringArre
coutl << "DocDs::dev_struct(): entering... !" << endl;

// Add your own code to control device here

argout->dvalue.length(3);
argout->dvalue[0] = 0.0;

argout->dvalue[1] = 11.11;
argout->dvalue[2] = 22.22;

argout->svalue.length(2);

argout->svalue[0] = CORBA::string_dup("Be Bop");
string str("Smurf");

argout->svalue[1] = CORBA::string_dup(str.c_str());

return argout;

The argout data structure is created at line 8. The length of the double array in the output
structure is set at line 14. The array is populated between lines 15 and 17. The length of the string
array in the output structure is set at line 19. This string array is populated between lines 20 an

2.1. THE COMMANDS AND ATTRIBUTES CODE IN C++ 15

22 from a hard-coded string and from a standard C-++ string. This method allocates memory
for the argout data. This memory is freed by the Tango core classes after the data have been
sent to the caller (no delete is needed). Note the usage of the string dup function of the CORBA
namespace. This is necessary for strings array due to the CORBA memory allocation schema.

2.1.6 The three attributes

Some data have been added to the definition of the device class in order to store attributes value.
These data are (part of the class definition) :

1

2

3 protected :

4 // Add your own data members here

5 [/ mmmm
6 Tango: :DevString attr_str_array[5];
7 Tango: :DevLlong attr_rd;

8 Tango: :DevLlong attr_wr;

One data has been created for each attribute. As the StrAttr attribute is of type spectrum
with a maximun X dimension of 5, an array of length 5 has been reserved.

Three methods are necessary to implement these attributes. The code for these methods is the
following :

1 void DocDs::write_attr_hardware(vector<long> &attr_list)

2 A

3 cout << "In write_attr_hardware for " << attr_list.size();
4 cout << " attribute(s)" << endl;

5

6 for (long i=0 ; i < attr_list.size() ; i++)

7 {

8 WAttribute &att = dev_attr->get_w_attr_by_ind(attr_list[i]);
9 string attr_name = att.get_name();

10

11 cout << "Attribute name = " << attr_name;

12

13 // Switch on attribute name

14 J e

15 if (attr_name == "LongWrAttr")

16 {

17 // Add your own code here

18 att.get_write_value(attr_wr);

19 cout << "Value to be written = " << attr_wr << endl;
20 }

21 }

22 }

23

24 void DocDs::read_attr_hardware(vector<long> &attr_list)
25 {

16 CHAPTER 2. GETTING STARTED

26 cout << "In read_attr_hardware for " << attr_list.size();
27 cout << " attribute(s)" << endl;

28

29 // Add your own code here

30 [/ ===

31

32 string att_name;

33 for (long i = 0;i < attr_list.size();i++)

34 {

35 att_name = dev_attr->get_attr_by_ind(attr_list[i]).get_name();
36

37 if (att_name == "LongRdAttr")

38 {

39 attr_rd = 5;

40 }

41 }

42 }

43

44 void DocDs::read_attr(Tango::Attribute &attr)

45 A

46 string &attr_name = attr.get_name();

a7

48 cout << "In read_attr for attribute " << attr_name << endl;
49

50 // Switch on attribute name

51 [/

52 if (attr_name == "LongRdAttr")

53 {

54 // Add your own code here

55 attr.set_value(&attr_rd);

56 }

57 if (attr_name == "LongWrAttr")

58 {

59 // Add your own code here

60 attr.set_value(&attr_wr);

61 }

62 if (attr_name == "StrAttr")

63 {

64 // Add your own code here

65 attr_str_array[0] = CORBA::string_dup("Rock");
66 attr_str_array[1] = CORBA::string_dup("Samba") ;
67

68 attr.set_value(attr_str_array, 2);

69 }

70 }

The write_ attr _hardware() method is executed when an attribute value is set by a client. In
our example only one attribute is writable (the LongWrAttr attribute). The new attribute value
coming from the client is stored in the object data at line 18. The read_ attr hardware() method
is executed once when a client execute the read attributes CORBA request. The rule of this
method is to read the hardware and to store the read values somewhere in the device object. In
our example, only the LongRdAttr attribute internal value is set by this method at line 39. The

2.2. THE COMMANDS AND ATTRIBUTES CODE IN JAVA 17

method read_ attr() is executed for each attribute to be read by the read _attributes CORBA call.
Tts rule is to set the attribute value in the TANGO core classes object representing the attribute.
This is done at line 55 for the LongRdAttr attribute, at line 60 for the LongWrAttr attribute and
at line 68 for the StrAttr attribute. This last attribute is initialised in this method at line 65 and
66 with the string dup CORBA function.

2.2 The commands and attributes code in java

For each command called DevXxxx, pogo generates in the device class a method named dev_ xxx
which will be executed when the command is requested by a client. In this chapter, the name of
the device class is DocDs

2.2.1 The DevSimple command

This method receives a Tango DevFloat type and also returns a data of the Tango DevFloat type
which is simply the double of the input value. Using java, the Tango::DevFloat type is mapped
to classical java float type. The code for the method executed by this command is the following:

1 public float dev_simple(float argin) throws DevFailed
2 {

3 float argout = (float)O;

4

5 Util.out2.println("Entering dev_simple()");

6

7 // ---Add your Own code to control device here ---
8

9 argout = argin * 2;

10 return argout;

11}

This method is fairly simple. The received data is passed to the method as its argument. It is
doubled at line 9 and the method simply returns the result.

2.2.2 The DevArray command

This method receives a data of the Tango::DevVarLongArray type and also returns a data of the
Tango::DevVarLongArray type. Each element of the array is doubled. Using java, the Tango
DevVarLongArray type is mapped to an array of java long. The code for the method executed by
the command is the following :

public int[] dev_array(int[] argin) throws DevFailed
{
int[] argout = new int[argin.length];

Util.out2.println("Entering dev_array()");

// ---Add your Own code to control device here ---

O 00N Ok WN -

for (int i = 0;i < argin.length;i++)

18

10
11
12

CHAPTER 2. GETTING STARTED

argout[i] = argin[i] * 2;
return argout;

The argout data array is created at line 3. The array is populated at line 9,10 and returned.

2.2.3 The DevString command

This method receives a data of the Tango DevString type and also returns a data of the Tango
DevString type. The command simply displays the content of the input string and returns a
hard-coded string. Using java, the Tango DevString type simply maps to java String.The code for
the method executed by the command is the following :

[y
= O WO N D WN =

[y

P
{

(-

ublic String dev_string(String argin) throws DevFailed

Util.out2.println("Entering dev_string()");
// ---Add your Own code to control device here ---
System.out.println("the received string is "+argin);

String argout = new String("Am I a good Tango dancer ?");
return argout;

The argout string is created at line 9.

2.2.4 The DevStrArray command

This method does not receive input data but returns an array of strings (Tango DevVarStringArray
type). Using java, the Tango DevVarStringArray type maps to an array of java String. The code
for the method executed by this command is the following:

O ~NO O WN -

p
{

ublic String[] dev_str_array() throws DevFailed

Util.out2.println("Entering dev_str_array()");
// ---Add your Own code to control device here ---

String[] argout = new String[3];
argout[0] = new String("Rumba");
argout[1] = new String("Waltz");
argout[2] = new String("Jerck");
return argout;

The argout data array is created at line 8. The array is populated at line 9,10 and 11.

2.2. THE COMMANDS AND ATTRIBUTES CODE IN JAVA 19

2.2.5 The DevStruct command

This method does not receive input data but returns a structure of the Tango DevVarDou-
bleStringArray type. This type is a composed type with an array of double and an array of
strings. This is mapped to a specific java class called DevVarDoubleStringArray. The code for the
method executed by this command is the following:

1 public DevVarDoubleStringArray dev_struct() throws DevFailed
2 {

3 DevVarDoubleStringArray argout = new DevVarDoubleStringArray() ;
4

5 Util.out2.println("Entering dev_struct()");

6

7 // ---Add your Own code to control device here ---

8

9 argout.dvalue = new double[3];

10 argout.dvalue[0] = 0.0;

11 argout.dvalue[1] = 11.11;

12 argout.dvalue[2] = 22.22;

13

14 argout.svalue = new String[2];

15 argout.svalue[0] = new String("Be Bop");

16 argout.svalue[1] = new String("Smurf");

17

18 return argout;

19 3%

The argout data structure is created at line 3. The double array in the output structure
is created at line 9. The array is populated between lines 10 and 12. The string array in the
output structure is created at line 14. This string array is populated between lines 15 and 16 from
hard-coded strings.

2.2.6 The three attributes

Some data have been added to the definition of the device class in order to store attributes value.
These data are (part of the class definition) :

1 protected String[] attr_str_array = new String[5];
2 protected int attr_rd;
3 protected int attr_wr;

One data has been created for each attribute. As the StrAttr attribute is of type spectrum
with a maximun X dimension of 5, an array of length 5 has been reserved.

Three methods are necessary to implement these attributes. The code for these methods is the
following :

CHAPTER 2. GETTING STARTED

1 public void write_attr_hardware(Vector attr_list)

2 A

3 Util.out2.println("In write_attr_hardware for "+attr_list.size()+" attribute
4

5 for (int i=0 ; i<attr_list.size() ; i++)

6 {

7 int ind = ((Integer) (attr_list.elementAt(i))).intValue();
8 WAttribute att = dev_attr.get_w_attr_by_ind(ind);

9 String attr_name = att.get_name();

10

11 // Switch on attribute name

12 [/

13 if (attr_name.equals("LongWrAttr") == true)

14 {

15 // Add your own code here

16 attr_wr = att.get_lg_write_value();

17 System.out.println("Value to be written = "+attr_wr);
18 X

19 X
20 }
21
22
23 public void read_attr_hardware(Vector attr_list)
24
25 Util.out2.println("In read_attr_hardware for "+attr_list.size()+" attribute(
26
27 // Add you own code here
28 [/
29
30 for (int i=0; i<attr_list.size() ; i++)
31 {
32 int ind = ((Integer) (attr_list.elementAt(i))).intValue();
33 Attribute att = dev_attr.get_attr_by_ind(ind);
34 String attr_name = attr_list.elementAt(i);
35
36 if (attr_name.equals("LongRdAttr") == true)
37 {
38 attr_rd = 5;
39 }
40 else if (attr_name.equals("StrAttr") == true)
41 {
42 attr_str_array[0] = new String("Rock");
43 attr_str_array[1] = new String("Samba");
44 }
45 X
46 }
47
48
49 public void read_attr(Attribute attr) throws DevFailed
50 {
51 String attr_name = attr.get_name();
52 Util.out2.println("In read_attr for attribute "+attr_name);
53

54 // Switch on attribute name

2.2. THE COMMANDS AND ATTRIBUTES CODE IN JAVA 21

55 [/

56 if (attr_name.equals("LongWrAttr") == true)
57 {

58 // Add your own code here

59 attr.set_value(attr_wr);

60 }

61 if (attr_name.equals("LongRdAttr") == true)
62 {

63 // Add your own code here

64 attr.set_value(attr_rd);

65 }

66 if (attr_name.equals("StrAttr") == true)

67 {

68 // Add your own code here

69 attr.set_value(attr_str_array);

70 }

71}

The write_attr _hardware() method is executed when an attribute value is set by a client. In
our example only one attribute is writable (the LongWrAttr attribute). The new attribute value
coming from the client is stored in the object data at line 16. The read_ attr hardware() method
is executed once when a client execute the read attributes CORBA request. The rule of this
method is to read the hardware and to store the read values somewhere in the device object.
In our example, the LongRdAttr attribute internal value is set by this method at line 38 at the
StrAttr attribute internal value is set at lines 42 and 43. The method read_ attr() is executed
for each attribute to be read by the read attributes CORBA call. Its rule is to set the attribute
value in the TANGO core classes object representing the attribute. This is done at line 64 for
the LongRdAttr attribute, at line 59 for the LongWrAttr attribute and at line 69 for the StrAttr
attribute.

22

CHAPTER 2. GETTING STARTED

Chapter 3

The TANGO device server model

This chapter will present the TANGO device server object model hereafter referred as TDSOM.
First, it will introduce CORBA. Then, it will describe each of the basic features of the TDSOM
and their function. The TDSOM can be divided into the following basic elements - the device,
the server, the database and the application programmers interface. This chapter will treat each
of the above elements separately.

3.1 Introduction to CORBA

CORBA is a definition of how to write object request brokers (ORB). The definition is managed by
the Object Management Group (OMG [1]). Various commercial and non-commercial implemen-
tations exist for CORBA for all the mainstream operating systems. CORBA uses a programming
language independent definition language (called IDL) to defined network object interfaces. Lan-
guage mappings are defined from IDL to the main programming languages e.g. C++, Java, C,
COBOL, Smalltalk and ADA. Within an interface, CORBA defines two kinds of actions available
to the outside world. These actions are called attributes and operations.

Operations are all the actions offered by an interface. For instance, within an interface for a
Thermostat class, operations could be the action to read the temperature or to set the nominal
temperature. An attribute defines a pair of operations a client can call to send or receive a value.
For instance, the position of a motor can be defined as an attribute because it is a data that you
only set or get. A read only attribute defines a single operation the client can call to receives a
value. In case of error, an operation is able to throw an exception to the client, attributes cannot
raises exception except system exception (du to network fault for instance).

Intuitively, IDL interface correspond to C++ classes and IDL operations correspond to C++
member functions and attributes as a way to read/write public member variable. Nevertheless,
IDL defines only the interface to an object and say nothing about the object implementation.
IDL is only a descriptive language. Once the interface is fully described in the IDL language, a
compiler (from IDL to C++, from IDL to Java...) generates code to implement this interface.
Obviously, you still have to write how operations are implemented.

The act of invoking an operation on an interface causes the ORB to send a message to the
corresponding object implementation. If the target object is in another address space, the ORB
run time sends a remote procedure call to the implementation. If the target object is in the same
address space as the caller, the invocation is accomplished as an ordinary function call to avoid
the overhead of using a networking protocol.

For an excellent reference on CORBA with C++ refer to [2]. The complete TANGO IDL file
can be found in the TANGO web page[3]

23

24 CHAPTER 3. THE TANGO DEVICE SERVER MODEL

3.2 The model

The basic idea of the TDSOM is to treat each device as an object. Each device is a separate
entity which has its own data and behavior. Each device has a unique name which identifies it in
network name space. Devices are organised according to classes, each device belonging to a class.
All classes are derived from one root class thus allowing some common behavior for all devices.
Four kind of requests can be sent to a device (locally i.e. in the same process, or remotely i.e.
across the network) :

Execute actions via commands

Read some basic device data available for all devices via CORBA attributes.

Read/Set data specific to each device belonging to a class via TANGO attributes

Execute a predefined set of actions available for every devices via CORBA operations

Each device is stored in a process called a device server. Devices are configured at runtime via
properties which are stored in a database.

3.3 The device

The device is the heart of the TDSOM. A device is an abstract concept defined by the TDSOM. In
reality, it can be a piece of hardware (an interlock bit) a collection of hardware (a screen attached
to a stepper motor) a logical device (a taper) or a combination of all these (an accelerator). Each
device has a unique name in the control system and eventually alias. At the ESRF a four field
name space has been adopted consisting of

[//FACILITY /[DOMAIN/CLASS/MEMBER

Facility refers to the control system instance, domain refers to the sub-system, class the class and
member the instance of the device. Device name alias(es) must also be unique within a control
system. There is no predefined syntax for device name alias.

Each device belongs to a class. The device class contains a complete description and imple-
mentation of the behavior of all members of that class. New device classes can be constructed out
of existing device classes. This way a new hierarchy of classes can be built up in a short time.
Device classes can use existing devices as sub-classes or as sub-objects. The practice of reusing
existing classes is classical for Object Oriented Programming and is one of its main advantages.

All device classes are derived from the same class (the device root class) and implement the
same CORBA interface. All devices implementing the same CORBA interface ensures all
control object support the same set of CORBA operations and attributes. The device root class
contains part of the common device code. By inheriting from this class, all devices shared a
common behavior. This also makes maintenance and improvements to the TDSOM easy to carry
out.

All devices also support a black box where client requests for attributes or operations are
recorded. This feature allows easier debugging session for device already installed in a running
control system.

3.3.1 The commands

Each device class implements a list of commands. Commands are very important because they are
the client’s major dials and knobs for controlling a device. Commands have a fixed calling syntax
- consisting of one input argument and one output argument. Arguments type must be chosen
in a fixed set of data types (All simple types and arrays of simple types plus array of strings
and longs and array of strings and doubles). Commands can execute any sequence of actions.

3.3. THE DEVICE 25

Commands can be executed synchronously (the requester is blocked until the command ended) or
asynchronously (the requester send the request and is called back when the command ended).

Commands are executed using two CORBA operations named command _inout for syn-
chronous commands and command inout async for asynchronous commands. These two
operations called a special method implemented in the device root class - the command_ handler
method. The command_ handler calls an is_ allowed method implemented in the device class be-
fore calling the command itself. The is_ allowed method is specific to each command®. It checks
to see whether the command to be executed is compatible with the present device state. The
command function is executed only if the is_allowed method allows it. Otherwise, an exception
is sent to the client.

3.3.2 The CORBA attributes

Some key data implemented for each device can be read without the need to call a command.
These data are :

The device state

The device status

The device name

The administration device name called adm name

e The device description

The device state is a number representing its state. A set of predefined states are defined in the
TDSOM. The device status is a string describing in plain text the device state and any additional
useful information of the device as a formatted ascii string. The device name is its name as
defined in 3.3. For each set of devices grouped within the same server, an administration device
is automatically added. This adm_name is the name of the administraion device. The device
description is also an ascii string describing the device rule.

These five CORBA attributes are implemented in the device root class and therefore do not
need any coding from the device class programmer. As explained in 3.1, the CORBA attributes
are not allowed to raise exceptions whereas command (which are implemented using CORBA
operations) can.

3.3.3 The TANGO attributes

In addition to commands, TANGO devices also support normalised data types called attributes?.
Commands are device specific and the data they transport are not normalised i.e. they can be
any one of the TANGO data types with no restriction on what each byte means. This means that
it is difficult to interpret the output of a command in terms of what kind of value(s) it represents.
Generic display programs need to know what the data returned represents, in what units it is, plus
additional information like minimum, maximum, quality etc. Tango attributes solve this problem.

TANGO attributes are zero, one or two dimensional data which have a fix set of proper-
ties e.g. quality, minimum and maximum, alarm low and high. They are transferred in a spe-
cialised TANGO type and can be read or read-write. A device can support a list of attributes.
Clients can read one or more attributes from one or more devices. To read TANGO attributes,
the client uses the read attributes operation. To write TANGO attributes, a client uses the
write attributes operation. To query a device for all the attributes it supports, a client uses
the get attribute config operation. These three operations are defined in the device CORBA
interface.

'In contrary to the state handler method of the TACO device server model which is not specific to each
command.
2TANGO attributes were known as signals in the TACO device server model

26 CHAPTER 3. THE TANGO DEVICE SERVER MODEL

3.3.4 The remaining CORBA operations

The TDSOM also supports a list of actions defined as CORBA operations in the device interface
and implemented in the device root class. Therefore, these actions are implemented automatically
for every TANGO device. These operations are :

ping to ping a device to check if the device is alive. Obviously, it checks only the
connection from a client to the device and not all the device functionalities

command list query request a list of all the commands supported by a device with their input
and output types and description

command _query request information about a specific command which are its input and
output type and description

info request general information on the device like its name, the host where
the device server hosting the device is running...

black box read the device black-box as an array of strings

3.4 The server

Another integral part of the TDSOM is the server concept. The server (also referred as device
server) is a process whose main task is to offer one or more services to one or more clients. To do
this, the server has to spend most of its time in a wait loop waiting for clients to connect to it.
The devices are hosted in the server process. A server is able to host several classes of devices. In
the TDSOM, a device of the DServer class is automatically hosted by each device server. This
class of device supports commands which enable remote device server process administration.

TANGO supports device server process on four operating system : Linux, Solaris, HP-UX and
Windows NT.

3.5 The database

To achieve complete device independence, it is necessary however to supplement device classes
with a possibility for configuring device dependencies at runtime. The utility which does this in
the TDSOM is the property database. Properties® are identified by an ascii string and the
device name. TANGO attributes are also configured using properties. This database is also used
to store device network addresses (CORBA IOR’s), list of classes hosted by a device server process
and list of devices for each class in a device server process. The database ensure the uniqueness
of device name and of alias. It also links device name and it list of aliases.

TANGO uses MySQL[4] as its database. MySQL is a relational database which implements a
subset of the SQL language. However, this subset is enough to implement all the functionalities
needed by the TDSOM. The database is accessed via a classical TANGO device hosted in a device
server. Therefore, client access the database via TANGO commands requested on the database
device. For a good reference on MySQL refer to [5]

3.6 The application programmers interface

To be filled in later

3Properties were known as resources in the TACO device server model

Chapter 4

The device server framework

This chaper will present the TANGO device server framework. It will introduce what is the device
server pattern and then it will describe a complete device server framework. A definition of classes
used by the device server framework is given in this chapter. This manual is not intended to give
the complete and detailed description of classes data member or methods, refer to [6] to get this
full description. But first, the naming convention used in this project is detailed.

The aim of the class definition given in this chapter is only to help the reader to understand
how a TANGO device server works. For a detailed description of these classes (and their methods),
refer to chapter 6 or to [6].

4.1 Naming convention and programming language

TANGO fully supports two different programming languages which are C++ and Java. When
the Java code differs from the C+-+ code, examples in both languages will be given. For C++, its
standard library has been used. Details about this library can be found in [7].

Every software project needs a naming convention. The naming convention adopted for the
TDSOM is very simple and only defines two guidelines which are:

e Class names start with uppercase and use capitalization for compound words (For instance
MyClassName).

e Method names are in lowercase and use underscores for compound words (For instance
my method name).

These conventions will be use herafter for both C++ and Java.

4.2 The device pattern

Device server are written using the Device pattern. The aim of this pattern is to provide the
control programmer with a framework in which s/he can develop new control objects. The device
pattern uses other design patterns like the Singleton, Command and Factory patterns. These
paterns are fully described in [8]. The device pattern class diagram for stepper motor device is
drawn in figure 4.1 . In this figure, only classes surrounded with a dash line square are device
specific. All the other classes are part of the TDSOM core and are developped by the Tango
system team. Different kind of classes are used by the device pattern.

e Three of them are root classes and it is only necessary to inherit from them. These classes
are the DeviceImpl, DeviceClass and Command classes.

27

CHAPTER 4. THE DEVICE SERVER FRAMEWORK

CORBA cl asses

DbClass Devi cel npl
1,.n init_device()=0
get_property() attribute_factory()
put_prperty() command_fact ory()
dev_state DbDevice
1

get_property()
put_property()

Devi ced ass St pper Mot or

devi ce_factory()=0 init_device()

command_f act ory() =0 dev_read_position()

7Y

:

St epper Mot or 0 ass Comand
devi ce_factory() n is_all owed()=0
command_f act ory() - execut e() =0
DevStat e DevSt at us DevRest art DevReadPosi ti on Templ Command
is_allowed() is_allowed() is_allowed() is_allowed() is_allowed()
execut e() execut e() execut e() execut e() execut e()
TemplCommandin Templ CommandOut Templ CommandinOut
i s_allowed() is_allowed() is_allowed()
execut e() execut e() execute()

Attribute MultiAttribute
set_value() 1,.n get_attr....() 1
get_name() check_alarm()
read_alarm()
WAttribute
get_write_value()

Figure 4.1: Device pattern class diagram

4.2. THE DEVICE PATTERN 29

e Classes necessary to implement commands. The TDSOM supports two ways to create com-
mand : Using inheritance or using the template command model. It is possible to mix model
within the same device pattern

1. Using inheritance. This model of creating command heavily used the polymorphism
offered by each modern object oriented programming language. In this schema, each
command supported by a device via the command inout or command inout async
operation is implemented by a separate class. The Command class is the root class
for each of these classes. It is an abstract class. A ezecute method must be defined in
each sub-class. A is_ allowed method may also be re-defined in each class if the default
one does not fulfill all the needs'. In our stepper motor device server example, the
DevReadPosition command follows this model.

2. Using the template command model. Using this model, it is not necessary to write
one class for each command. You create one instance of classes already defined in the
TDSOM for each command. The link between command name and method which need
to be exceuted is done through pointers to method for C++ and through method names
for Java. To support different kind of command, four classes are part of the TDSOM.
These classes are :

(a) The TemplCommand class for command without input or output parameter

(b) The TemplCommandIn class for command with input parameter but without
output parameter

(¢) The TemplCommandOQOut class for command with output parameter but without
input parameter

(d) The TemplCommandInOut class for all the remaining commands

e Classes necessary to implement TANGO device attributes. All these classes are part of the
TANGO core classes. These classes are the MultiAttribute, Attribute and WAttribute
classes.

e The other are device specific. For stepper motor device, they are named StepperMotor,
StepperMotorClass and DevReadPosition.

4.2.1 The Devicelmpl class

Description

This class is the device root class and is the link betwen the Device pattern and CORBA. It inherits
from CORBA classes and implements all the methods needed to execute CORBA operations
and attributes. For instance, its method command_inout is executed when a client requests a
command inout operation. The method name of the Devicelmpl class is executed when a client
requests the name CORBA attribute. This class also encapsulates some key device data like its
name, its state, its status, its black box.... This class is an abstract class and cannot be instanciated
as is.

Contents
The contents of this class can be summarise as :
e Different constructors and one destructor

e Methods to access instance data members outside the class or its derivated classes. These
methods are necessary because data members are declared as protected.

e Methods triggered by CORBA attribute request

!The default is allowed method behaviour is to always allows the command

30 CHAPTER 4. THE DEVICE SERVER FRAMEWORK

e Methods triggered by CORBA operation request

e The init_device() method. This method makes the class abstract. It should be implemented
by a sub-class. It is used by the inherited classes constructors.

e Methods triggered by the automatically added DevState and DevStatus commands. These
methods are declared virtual and therefore can be redefined in sub-classes. These two com-
mands are automatically added to the list of commands defined for a class of devices. They
are discussed in chapter 4.5

e A method called always executed hook() always excuted for each command before the de-
vice state is tested for command execution. This method gives the programmer a hook where
he(she) can program some mandatory action which must be done before any command ex-
ecution. An example of the such action is an hardware access to the device to read its real
hardware state.

e Methods triggerred by the read attributes CORBA operation. The read attr hardware
method is called once for each read attributes call. The read attr method is called for
each attribute(s) involved in the read attributes CORBA operation. These two methods
are virtual and may be redefined in sub-classes.

e Method triggered by the write attributes CORBA operation. This method is virtual and
therefore may be redefined in a sub-class

e Methods for signal management (C+-+ specific)
e Data members like the device name, the device status, the device state

e Some private methods and data members

4.2.2 The DbDevice class

Each Devicelmpl instance is an aggregate with one instance of the DbDevice class. This DbDevice
class can be used to query or modify device properties. It provides an easy to use interface for
device objects in the database. The description of this class can be found in the Tango java or
C++ API documentation.

4.2.3 The Command class
Description of the inheritance model

Within the TDSOM, each command supported by a device and implemented using the inheritance
model is implemented by a separate class. The Command class is the root class for each of these
classes. It is an abstract class. It stores the command name, the command argument types and
description and mainly defines two methods which are the execute and is_allowed methods. The
erecute method should be implemented in each sub-class. A default is_ allowed method exists for
command always allowed.

Description of the template model

Using this method, it is not necessary to create a separate class for each device command. In this
method, each command is represented by an instance of one of the template command classes.
They are four template command classes. All these classes inherits from the Command class.
These four classes are :

1. The TemplCommand class. One object of this class must be created for each command
without input nor output parameters

4.2. THE DEVICE PATTERN 31

2. The TemplCommandIn class. One object of this class must be created for each command
without output parameter but with input parameter

3. The TemplCommandOut class. One object of this class must be created for each command
without input parameter but with output parameter

4. The TemplCommandInOut class. One object of this class must be created for each
command with input and output parameters

These four classes redefine the execute and is_allowed method of the Command class. These
classes provides constructors which allow the user to :

e specify which method must be executed by these classes ezecute method

e optionally specify which method must be executed by these classes is_ allowed method.

The method specification is done via pointer to method with C++ and simply with method name
for java.

Remember that it is possible to mix command implementation method within the same device
pattern.

Contents

The content of this class can be summarises as :

e Class constructors and destructor

e Declaration of the ezecute method

e Declaration of the is_ allowed method

e Methods to read/set class data members

e Methods to extract data from the object used to transfer data on the network
e Methods to insert data into the object used to transfer data on the network

e (Class data members like command name, command input data type, command input data
description...

4.2.4 The DeviceClass class

Description

This class implements all what is specific for a controlled object class. For instance, every device of
the same class supports the same list of commands and therefore, this list of available commands is
stored in this DeviceClass. The stucture returned by the info operation contains a documentation
URL2. This documentation URL is the same for every device of the same class. Therefore, the
documentation URL is a data member of this class. There should have only one instance of this
class per device pattern implementation. The device list is also stored in this class. It is an
abstract class because the two methods device factory() and command_ factory() are declared as
pure virtual. The rule of the device factory() method is to create all the devices belonging to
the device class. The rule of the command_ factory() method is to create one instance of all the
classes needed to support device commands. This class also stored the attribute_factory method.
The rule of this method is to store in a vector of strings, the name of all the device attributes.
This method has a default implemention which is an empty body for device without attribute.

2URL stands for Uniform Resource Locator

32 CHAPTER 4. THE DEVICE SERVER FRAMEWORK

Contents

The contents of this class can be summarise as :

e The command_ handler method

Methods to access data members.

Signal related method (C++ specific)

Class constructor. It is protected to implements the Singleton pattern

Class data members like the class command list, the device list...

4.2.5 The DbClass class

Each DeviceClass instance is an aggregate with one instance of the DbClass class. This DbClass
class can be used to query or modify class properties. It provides an easy to use interface for
device objects in the database. The description of this class can be found in the Tango java or
C++ API documentation.

4.2.6 The MultiAttribute class
Description

Thic class is a container for all the TANGO attributes defined for the device. There is one instance
of this class for each device. This class is mainly an aggregate of Attribute object(s). It hs been
developped to ease TANGO attribute management.

Contents

The class contents could be summarises as :

e Miscellaneous methods to retrieve one attribute object in the aggregate

Method to retrieve a list of attribute with an alarm level defined

Get attribute number method

Miscellaneous methods to check if an attribute value is outside the authorized limits

Method to add messages for all attribute with an alarm set

Data members with the attribute list

4.2.7 The Attribute class
Description

There is one object of this class for each device attribute. This class is used to store all the
attribute properties, the attribute value and all the alarm related data.

4.2. THE DEVICE PATTERN 33

Contents
e Miscellaneous method to get boolean attribute information
e Methods to access some data members
e Methods to get/set attribute properties
e Method to check if the attribute is in alarm condition
e Methods related to attribute data
e Friend function to print attribute properties

e Data members (properties value and attribute data)

4.2.8 The WAttribute class
Description

This class inherits from the Attribute class. There is one instance of this class for each writable
device attribute. On top of all the data already managed by the Attribute class, this class stores
the attribute set value.

Contents

Within this class, you will mainly find methods related to attribute set value storage and some
data members.

4.2.9 The StepperMotor class
Description

This class inherits from the Devicelmpl class and is the class implementing the controlled object
behaviour. Each command will trigger a method in this class written by the device server pro-
grammer and specific to the object to be controlled. This class also stores all the device specific
data.

Definition

1 class StepperMotor: public Devicelmpl

2 A

3 public :

4 StepperMotor(DeviceClass *,string &);

5 StepperMotor (DeviceClass *,const char *);

6 StepperMotor (DeviceClass *,const char *,const char *);
7 ~StepperMotor () {};

8
9

long dev_read_position(long);

10 long dev_read_direction(long);

11 bool direct_cmd_allowed(const CORBA::Any &) ;
12

13 virtual Tango_DevState dev_state();

14 virtual Tango_DevString dev_status();

15 virtual void always_executed_hook();

16

34 CHAPTER 4. THE DEVICE SERVER FRAMEWORK

17 virtual void init_device();

18

19 protected :

20 long axis[AGSM_MAX_MOTORS] ;

21 long position[AGSM_MAX_MOTORS];
22 long direction[AGSM_MAX_MOTORS];
23 long state[AGSM_MAX_MOTORS];

24 };

Line 1 : The StepperMotor class inherits from the Devicelmpl class

Line 4-7 : Class constructors and destructor

Line 9 : Method triggered by the DevReadPosition command

Line 10-11 : Methods triggerred by the DevReadDirection command

Line 13 : Redefinition of the dev state method of the Devicelmpl class. This method will be
triggered by the DevState command

Line 14 : Redefinition of the dev status method of the Devicelmpl class. This method will be
triggered by the DevStatus command

Line 15 : Redefinition of the always ezecuted hook method.

Line 17 : Definition of the init_ device method (declared as pure virtual by the Devicelmpl
class)

Line 20-23 : Device data

4.2.10 The StepperMotorClass class
Description

This class inherits from the DeviceClass class. Like the DeviceClass class, there should be only
one instance of the StepperMotorClass. This is ensured because this class is written following the
Singleton pattern as defined in [8]. All controlled object class data which should be defined only
once per class must be stored in this object.

Definition
1 class StepperMotorClass : public DeviceClass
2 {
3 public:
4 static StepperMotorClass *init(const char *);
5 static StepperMotorClass *instance();
6 ~StepperMotorClass() {_instance = NULL;}
7
8 protected:
9 StepperMotorClass(string &) ;
10 static StepperMotorClass *_instance;
11 void command_factory();
12
13 private:
14 void device_factory(Tango_DevVarStringArray *);

15 };

4.3. STARTUP OF A DEVICE PATTERN 35

Line 1 : This class is a sub-class of the DeviceClass class

Line 4-5 and 9-10: Methods and data member necessary for the Singleton pattern

Line 6 : Class desctructor

Line 11 : Definition of the command_ factory method declared as pure virtual in the Device-
Class call

Line 13-14 : Definition of the device_ factory method declared as pure virtual in the DeviceClass
class

4.2.11 The DevReadPosition class

Description

This is the class for the DevReadPosition command. This class implements the execute and
is_ allowed methods defined by the Command class. This class is necessary because this command
is implemented using the inheritance model.

Definition
1 class DevReadPositionCmd : public Command
2 {
3 public:
4 DevReadPositionCmd(const char *,Tango_CmdArgType, Tango_CmdArgType, const ck
5 ~“DevReadPositionCmd () {};
6
7 virtual bool is_allowed (DeviceImpl *, const CORBA::Any &);
8 virtual CORBA::Any *execute (DeviceImpl *, const CORBA::Any &);
9 1;

Line 1 : The class is a sub class of the Command class

Line 4-5 : Class constructor and destructor

Line 7-8 : Definition of the is_allowed and ezecute method declared as pure virtual in the
Command class.

4.3 Startup of a device pattern

To start the device pattern implementation for stepper motor device, four methods of the Step-
perMotorClass class must be executed. These methods are :

1. The creation of the StepperMethodClass singleton via its init() method
2. The command_ factory() method of the StepperMotorClass class

3. The attribute_ factory() method of the StepperMotorClass class. This method has a default
empty body for device class without attributes.

4. The device_factory() method of the StepperMotorClass class

This startup procedure is described in figure 4.2 . The creation of the StepperMotorClass will
automatically create an instance of the DeviceClass class. The constructor of the DeviceClass class
will create the DevStatus and the DevState command objects and store them in its command list.

The command_ factory() method will simply create all the user defined commands and add
them in the command list.

36 CHAPTER 4. THE DEVICE SERVER FRAMEWORK

StepperbbtorClass DeviceQlass Devdtatus DevState DevRestart DevReadPosition Aftibutelid — StepperMotor Devicelml Aftibutely

********* ARk - A

LT e o | | | |

-t I T I 1) | | | | |

it el I et 1 l 1 1 1
comand factory 1 1 l l l
T > new l | | |
diibue fctoy | |- Rl I i B el I e 1 ! ! 1
********* > new | | |
device factory | |77 et A il A Sl el N ittt > ! ! !
””””” g e 1 1

_—— >

Figure 4.2: Device pattern startup sequence

The attribute_ factory() method will simply build a list of device attribute names.

The device_factory() method will create each StepperMotor object and store them in the
StepperMotorClass instance device list. The list of devices to be created and their names is passed
to the device_factory method in its input argument. StepperMotor is a sub-class of Devicelmpl
class. Therefore, when a StepperMotor object is created, a DeviceImpl object is also created. The
Devicelmpl constructor builds all the device attribute object(s) from the attribute list built by
the attribute factory() method.

4.4 Command execution sequence

The figure 4.3 described how the method implementing a command is executed when a com-
mand _inout CORBA operation is requested by a client. The command_inout method of the
StepperMotor object (inherited from the Devicelmpl class) is triggered by an instance of a class
generated by the CORBA IDL compiler. This method calls the command_ handler() method of the
StepperMotorClass object (inherited from the DeviceClass class). The command_ handler method
searchs in its command list for the wanted command (using its name). If the command is found,
the always ezxecuted hook method of the StepperMotor object is called. Then, the is_allowed
method of the wanted command is executed. If the is_allowed method returns correctly, the
exzecute method is executed. The execute method extracts the incomming data from the CORBA
object use to transmit data over the network and calls the user written method which implements
the command.

4.5. THE AUTOMATICALLY ADDED COMMANDS 37

StepperMotor object StepperMotorClass singleton DevReadPosition StepperMotor object
command_inout N
command_handl er i

aways executed hook

i's_all owed L

execute I dev_read_position

-

o T

Figure 4.3: Command execution timing

4.5 The automatically added commands

In order to increase the common behaviour of every kind of devices in a TANGO control system,
three commands are automatically added to each class of devices. These commands are :

e DevState

e DevStatus

The default behaviour of the method called by the DevState command depends on the device
state. If the device state is ON or ALARM, the method will :

e read the attribute(s) with an alarm level defined

o check if the read value is above/below the alarm level and eventually change the device state
to ALARM.

e returns the device state.

For all the other device state, the method simply returns the device state stored in the DeviceImpl
classs. Nevertheless, the method used to return this state (called dev_state) is defined as virtual
and can be redefined in DeviceImpl sub-class. The difference between the default DevState com-
mand and the state CORBA attribute is the ability of the DevState command to signal an error
to the caller by throwing an exception.

The default behaviour of the method called by the DevStatus command depends on the device
state. If the device state is ON or ALARM, the method returns the device status stored in the
Devicelmpl class plus additional message(s) for all the attributes which are in alarm condition.
For all the other device state, the method simply returns the device status as it is stored in
the Devicelmpl class. Nevertheless, the method used to return this status (called dev status) is
defined as virtual and can be redefined in Devicelmpl sub-class. The difference between the default
DevStatus command and the status CORBA attribute is the abaility of the DevStatus command
to signal an error to the caller by throwing an exception.

38 CHAPTER 4. THE DEVICE SERVER FRAMEWORK

4.6 Reading/Writing attributes

4.6.1 Reading attributes

A Tango client is able to read Tango attribute(s) with the CORBA read _attributes call. Inside the
device server, this call will trigger two methods of the device class (StepperMotor in our example)

1. A method call read_ attr hardware(). This method is called first and one time per read _attributes
CORBA call. The aim of this method is to read the device hardware and to store the result
in a device class data member.

2. A method call read_ attr(). This method is called as many times as attributes to be read.
It has one parameter which is a reference to the Attribute object to be read. The aim of
this method is to extract the real attribute value from the harware read-out and to store the
attribute value into the attribute object.

These two methods have a default empty body for classes without attributes.

4.6.2 Writing attributes

A Tango client is able to write Tango attribute(s) with the CORBA write _attributes call. Inside
a device server, this call will trigger one method of the device class (StepperMotor in our example)
called write_ attr _hardware(). This method has one parameter which is a vector of long. Each
vector element is the index into the attribute vector®of the attribute to be written. The aim of
this method is to get the data to be written from the WAttribute object and to write it into the
corresponding hardware.

4.7 The device server framework

4.7.1 Vocabulary

A device server pattern implementation is embedded in a process called a device server. Several
instances of the same device server process can be used in a TANGO control system. To identify
instances, a device server process is started with an instance name which is different for each in-
stance. The device server name is the couple device server executable name/device server instance
name. For instance, a device server started with the following command

Perkin id11

starts a device server process with an instance name id11, an executable name Perkin and a device
server name Perkin/id11.

4.7.2 The DServer class

In order to simplify device server process administration, a device of the DServer class is automat-
ically added to each device server process. Thus, every device server process supports the same set
of administration commands. The implementation of this DServer class follows the device pattern
and therefore, its device behaves like any other devices. The device name is

dserver/device server executable name/device server instance name

For instance, for the device server process described in chapter 4.7.1, the dserver device name
is dserver/perkin/id11. This name is the name returned by the adm_name CORBA attribute
available for every device. On top of the two automatically added commands, this device supports
the following commands :

3The vector attribute is a MultiAttribute data member

4.7. THE DEVICE SERVER FRAMEWORK 39

e DevRestart

e DevRestartServer

e DevQueryClass

e DevQueryDevice

e DevKill

e DevSetTraceLevel
e DevGetTraceLevel
e DevSetTraceOutput

e DevGetTraceOutput

These commands will be fully described later in this document.

Several controlled object classes can be embedded within the same device server process and
it is the rule of this device to create all these device server patterns and to call their command
and device factories as described in 4.3. The name and number of all the classes to be created
is known to this device after the execution of a method called class_factory. With C++, it is
the user responsability to write this method. Using Java, this method is already written and
automatically retrieves which classes must be created and creates them.

4.7.3 The Tango::Util class

Description

This class merges a complete set of utilities in the same class. It is implemented as a singleton
and there is only one instance of this class per device server process. It is mandatory to create
this instance in order to run a device server. The description of all the methods implemented in
this class can be found in [6].

Contents

Within this class, you can find :

Static method to create/retrieve the singleton object

Miscellaneous utility methods like getting the server output trace level, getting the CORBA
ORB pointer, retrieving device server instance name, getting the server PID and more.
Please, refer to [6] to get a complete list of all these utility methods.

Method to create the device pattern implementing the DServer class (server init())

Method to start the server (server run())

TANGO database related methods

4.7.4 A complete device server

Within a complete device server, at least two implementations of the device server pattern are
created (one for the dserver object and the other for the class of devices to contol). On top of
that, one instance of the Tango::Util class must also be created. A drawing of a complete device
server is in figure 4.4

40 CHAPTER 4. THE DEVICE SERVER FRAMEWORK

Tango:: Util Database
server_init() 1
server_run()
i Devicelmpl | i DeviceClass |
DServer ! AClass !
: S 1
| Device server pattern implementing the DServer class | ' Device server pattern(s) implementing device class(es) |

Figure 4.4: A complete device server

4.7.5 Device server startup sequence

The device server startup sequence is the following :

1. Create an instance of the Tango::Util class. This will initialize the CORBA Object Request
Broker

2. Called the server_init method of the Tango::Util instance The call to this method will :

(a) Create the DServerClass object of the device pattern implementing the DServer class.
This will create the dserver object which during its construction will :

i. Called the class factory method of the DServer object. This method must create
all the xxxClass instance for all the device pattern implementation embedded in
the device server process.

ii. Call the command_ factory and device factory of all the classes previously created.
The list of devices passed to each call to the device factory method is retrieved
from the TANGO database.

3. Wait for incoming request with the server run() method of the Tango::Util class.

Chapter 5

Exchanging data between client and
server using commands

Exchanging data between clients and server means most of the time passing data between processes
running on different computer using the network. Tango limits the type of data exchanged between
client and server and defines a way to exchange these data. This chapter details these features.
Memory allocation and error reporting are also discussed.

All the rules described in this chapter are valid only for data exchanged between
client and server. For device server internal data, classical C++ or Java types can
be use.

5.1 Command data types

Commands have a fixed calling syntax - consisting of one input argument and one output argument.
Arguments type must be chosen out of a fixed set of 19 data types. The following table details
type name, code and the corresponding CORBA IDL types.

The type name used in the type name column of this table is the C++ name. In the IDL file,
all the Tango definition are grouped in a IDL module named Tango. The IDL module maps to
C++ namespace. Therefore, all the data type are parts of a namespace called Tango. For Java,
the IDL module maps to Java package and name are not changed related to the IDL file.

41

42CHAPTER 5. EXCHANGING DATA BETWEEN CLIENT AND SERVER USING COMMANDS

| Type name | IDL type |

Tango::DevBoolean boolean

Tango::DevShort short

Tango::DevLong long

Tango::DevFloat float

Tango::DevDouble double

Tango::DevUShort unsigned short

Tango::DevULong unsigned long

Tango::DevString string

Tango::DevVarCharArray sequence of unsigned char

Tango::DevVarShortArray sequence of short

Tango::DevVarLongArray sequence of long

Tango::DevVarFloatArray sequence of float

Tango::DevVarDoubleArray sequence of double

Tango::DevVarUShortArray sequence of unsigned short

Tango::DevVarULongArray sequence of unsigned long

Tango::DevVarStringArray sequence of string

Tango::DevVarLongStringArray structure with a sequence
of long and a sequence of
string

Tango::DevVarDoubleStringArray | structure with a sequence
of double and a sequence
of string

Tango::DevState enumeration

The CORBA Interface Definition Language uses a type called sequence for variable length ar-
ray. This sequence type is mapped differently according to the language used (C++ or Java). The
Tango::DevUxxx types are used for unsigned types. The Tango::DevVarxxxxArray must be used
when the data to be transferred are variable length array. The Tango::DevVarLongStringArray
and Tango::DevVarDoubleStringArray are structures with two fields which are variable length ar-
ray of long and variable length array of strings for the Tango::DevVarLongStringArray and variable
length array of double and variable length array of string for the Tango::DevVarDoubleStringArray.
The Tango::DevState type is used by the DevState command to return the device state.

5.1.1 Using command data types with C++

Unfortunately, the mapping between IDL and C++ was defined before the C++ class library had
been standardised. This explains why the standard C++ string class or vector classes are not
used in the IDL to C++ mapping.

TANGO commands argument types can be grouped on five groups depending on the IDL data
type used. These groups are :

1. Data type using basic types (Tango::DevBoolean, Tango::DevShort, Tango::DevLong, Tango::DevFloat,
Tango::DevDouble, Tango::DevUshort and Tango::DevULong)

2. Data type using strings (Tango::DevString type)

3. Data types using sequences (Tango::DevVarxxxArray types except Tango::DevVarLongStringArray
and Tango::DevVarDoubleStringArray)

4. Data types using structures (Tango::DevVarLongStringArray and Tango::DevVarDoubleStringArray
types)

5. Data type using enumeration (Tango::DevState type)

5.1. COMMAND DATA TYPES 43

In the following sub chapters, only summaries of the IDL to C++ mapping are given. For a full
description of the C++ mapping, please refer to [2]

Basic types
For these types, the mapping between IDL and C++ is obvious and defined in the following table.

| Tango type name | IDL type | C++ | typedef |
Tango::DevBoolean boolean CORBA::Boolean | unsigned char
Tango::DevShort short CORBA::Short short
Tango::DevLong long CORBA::Long long
Tango::DevFloat float CORBA::Float float
Tango::DevDouble double CORBA::Double double
Tango::DevUShort | unsigned short | CORBA:UShort | unsigned short
Tango::DevULong | unsigned long | CORBA::ULong | unsigned long

The types defined in the column named C+-+ should be used for a better code portabil-
ity. All these typs are defined in the CORBA namespace and therefore their qualified names is
CORBA.::xxx.

Strings

Strings are mapped to char *. The use of new and delete for dynamic allocation of strings is not
portable. Instead, you must use helper functions defined by CORBA (in the CORBA namspace).
These functions are :

char *CORBA::string_alloc(unsigned long len);
char *CORBA::string_dup(const char *);
void CORBA::string_free(char *);

These functions handle dynamic memory for strings. The string _alloc function allocates one
more byte than requested by the len parameter (for the trailing 0). The function string dup
combines the allocation and copy. Both string alloc and string dup return a null pointer if
allocation fails. The string _free function must be used to free memory allocated with string alloc
and string _dup. Calling string free for a null pointer is safe and does nothing. The following
code fragment is an example of the Tango::DevString type usage

Tango: :DevString str = CORBA::string_alloc(5);
strcpy(str,"TANGO") ;

Tango: :DevString strl = CORBA::string_dup("Do you want to danse TANGO?");

CORBA: :string_free(str);
CORBA: :string_free(strl);

~NOo O WN -

Line 1-2 : TANGO is a five letters string. The CORBA::string _alloc function parameter is 5
but the function allocates 6 bytes

Line 4 : Example of the CORBA::string dup function

Line 6-7 : Memory deallocation

44CHAPTER 5. EXCHANGING DATA BETWEEN CLIENT AND SERVER USING COMMANDS

Sequences

IDL sequences are mapped to C++ classes that behave like vectors with a variable number of
elements. Each IDL sequence type results in a separate C++ class. Within each class representing
a IDL sequence types, you find the following method (only the main methods are related here) :

1. Four constructors.

(a) A default constructor which creates an empty sequence.

(b) The maximun constructor which creates a sequence with memory allocated for at least
the number of elements passed as argument. This does not limit the number of element
in the sequence but only the way how memory is allocated to store element

(c) A sophisticated constructor where it is possible to assign the memory used by the
sequence with a preallocated buffer.

(d) A copy constructor which does a deep copy

2. An assignement operator which does a deep copy
3. A length accessor which simply returns the current number of elements in the sequence

4. A length modifier which changes the length of the sequence (which is different than the
number of elements in the sequence)

5. Overloading of the [| operator. The subscript operator || provides access to the sequence
element. For a sequence containing elements of type T, the [| operator is overloaded twice
to return value of type T & and const T &. Insertion into a sequence using the [| operator
for the const T & make a deep copy. Sequence are numbered between 0 and length() -1.

Note that using the maximum constructor will not prevent you from setting the length of the
sequence with a call to the length modifier. The following code fragment is an example of how to
use a Tango::DevVarLongArray type

1 Tango: :DevVarLongArray *mylongseq_ptr;

2 mylongseq_ptr = new Tango: :DevVarLongArray() ;
3 mylongseq_ptr->length(4);

4

5 (*mylongseq_ptr) [0] = 1;

6 (*mylongseq_ptr) [1] = 2;

7 (*mylongseq_ptr) [2] = 3;

8 (*mylongseq_ptr) [3] = 4;

9

10 // (*¥mylongseq_ptr)[4] = 5;

11

12 CORBA: :Long nb_elt = mylongseq_ptr->length();
13

14 mylongseq_ptr->length(5);

15 (*mylongseq_ptr) [4] = 5;

16

17 for (int i = 0;i < mylongseq_ptr->length();i++)

18 cout << "Sequence elt " << i + 1 << " =" << (*mylongseq_ptr) [i] << endl;

5.1. COMMAND DATA TYPES 45

Line 1 : Declare a pointer to Tango::DevVarLongArray type which is a sequence of long

Line 2 : Create an empty sequence

Line 3 : Change the length of the sequence to 4

Line 5 - 8 : Initialise sequence elements

Line 10 ; Oups !!! The length of the sequence is 4. The behaviour of this line is undefined and
may be a core can be dumped at run time

Line 12 : Get the number of element actually stored in the sequence

Line 14-15 : Grow the sequence to five elements and initialise element number 5

Line 17-18 : Print sequence element

Another example for the Tango::DevVarStringArray type is given

1 Tango: :DevVarStringArray mystrseq(4);

2 mystrseq.length(4);

3

4 mystrseq[0] = CORBA::string_dup("Rock and Roll");
5 mystrseq[1] = CORBA::string_dup("Bossa Nova");

6 mystrseq[2] = CORBA::string_dup (‘Waltz’’);

7 mystrseq[3] = CORBA::string_dup("Tango");

8

9 CORBA: :Long nb_elt = mystrseq.length();

10

11 for (int i = 0;i < mystrseq.length();i++)

12 cout << "Sequence elt " << i + 1 << " =" << mystrseq[i] << endl;

Line 1 : Create a sequence using the maximum constructor

Line 2 : Set the sequence length to 4. This is mandatory even if you used the maximum
constructor.

Line 4-7 : Populate the sequence

Line 9 : Get how many strings are stored into the sequence

Line 11-12 : Print sequence elements.

Structures

Only two TANGO types are defined as structures. These types are the Tango::DevVarLongStringArray
and the Tango::DevVarDoubleStringArray. IDL structures map to C++ structures with corre-
sponding members. For the Tango::DevVarLongStringArray, the two members are named svalue

for the sequence of strings and lvalue for the sequence of longs. For the Tango::DevVarDoubleStringArray,
the two structure members are called svalue for the sequence of strings and dvalue for the sequence

of double. An example of the usage of the Tango::DevVarLongStringArray type is detailed below.

Tango: :DevVarLongStringArray my_vl;

myvl.svalue.length(2);
myvl.svalue[0] = CORBA_string_dup("Samba");
myvl.svalue[1] = CORBA_string_dup ("Rumba");

myvl.lvalue.length(1);
myvl.lvalue[0] = 10;

O ~NO U WN -

46CHAPTER 5. EXCHANGING DATA BETWEEN CLIENT AND SERVER USING COMMANDS

Line 1 : Declaration of the structure
Line 3-5 : Initialisation of two strings in the sequence of string member
Line 7-8 : Initialistaion of one long in the sequence of long member

Enumeration

Only one TANGO type is an enumeration. This is the Tango::DevState type used to transfer device
state between client and server. IDL enumerated types map to C++ enumerations (amazing no!)
with a trailing dummy enumerator to force enumeration to be a 32 bit type. The first enumerator
will have the value 0, the next one will have the value 1 and so on.

Tango: :DevSate state;

state = Tango: :0N;
state = Tango: :FAULT;

D W N e

5.1.2 Using command data types with Java

All the rules described in this chapter are valid only for data exchanged between client and server.
For device server internal data, classical Java types can be use.

TANGO commands argument types can be grouped on four groups depending on the IDL data
type used. These groups are :

1. Data type using basic types (DevBoolean, DevShort, DevLong, DevFloat, DevDouble, De-
vUShort, DevULong and DevString)

2. Data types using sequences (DevVarxxxArray types except DevVarLongStringArray and
DevVarDoubleStringArray)

3. Data types using structures (DevVarLongStringArray and DevVarDoubleStringArray types)
4. Data type using enumeration (DevState type)

In the following sub chapters, only summaries of the IDL to Java mapping are given. For a full
description of the Java mapping, please refer to [10].

Basic types
For these types, the mapping between IDL and Java is obvious and defined in the following table.

| Tango type name | IDL type [Java type]

DevBoolean boolean boolean
DevShort short short
DevLong long int
DevFloat float float

DevDouble double double
DevString string String
DevUShort unsigned short short
DevULong unsigned long int

The Java int is a 32 bits type' and therefore, the DevLong type maps to Java int. Java does
not support unsigned types, this is why the DevUShort type maps to short and the DevULong

I The Java long type is a 64 bits data type

5.1.

type maps to int. In the contrary of C++, Java does not support a preprocessor and therefore,
declaring a data from the DevLong type (or any other type in the previous table) will result in

COMMAND DATA TYPES

compiler errors. Instead, the Java types must be used.
IDL string maps directly to java.lang.String class.

Sequences

IDL sequences map to Java array. The following tables details the mapping used for Tango

sequence types.

| Tango type name IDL type | Java type |
DevVarCharArray sequence of byte byte]]
DevVarShortArray sequence of short short]]
DevVarLongArray sequence of long int][]
DevVarFloatArray sequence of float float|]
DevVarDoubleArray sequence of double double]]
DevVarUShort array | sequence of unsigned short short|
DevVarULongArray | sequence of unsigned long int][]
DevVarStringArray sequence of string String|]

Structures

IDL structures map to a final Java class with the same name. This class provides instance variables
It also provides a default constructor and a constructor from all
structures fields values. The class name, the field name and types are summaries in the following

for all IDL structure fields.

table

| Tango type name

Java class name

| field name | field Java type |

DevVarLongStringArray

DevVarLongStringArray

DevVarDoubleStringArray

DevVarDoubleStringArray

lvalue int|]

svalue String]]
dvalue double[]
svalue String]]

Enumeration

Enumeration does not exist in Java. An IDL enumeration is mapped to a final class with the same

name as the enum type. This class has the following members :

1

2.

4.

. A value method which returns the value as an integer.

(a) The first one is an integer with a name equals to the label name prepanded with an

A pair of static data members per label.

underscore (“_”) like _ON for instance.

(b) The second one is a reference to an object of the class representing the enumeration

with its value set to the label value.

class representing the enumeration

A private constructor

An integer conversion method called from_int which returns a reference to an object of the

The following code fragment is an example of Tango command data types usage

48CHAPTER 5. EXCHANGING DATA BETWEEN CLIENT AND SERVER USING COMMANDS

O© 00N O WN =

=
= O

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

short 1 = 2;

String[] str_array = new String[2];
str_array[0] = new String("Be Bop");
str_array[1] = new String("Break dance");

System.out.println("Elt nb in DevVarStringArray data " + str_array.length);
for (int i = 0;i < str_array.length;i++)
System.out.println("Element value = " + str_array[i]);

DevVarLongStringArray ls = new DevVarLongStringArray() ;
ls.lvalue = new int[1];

1s.lvaluel[0] = 1;

ls.svalue = new String[2];

ls.svalue[0] = new String("Smurf");

ls.svalue[1] = new String("Pogo");

DevState st = DevState.FAULT;

switch (st.value())

{

case DevState._0ON :
System.out.println("The state is ON");
st = DevState.FAULT;
break;

case DevState._FAULT :
System.out.println("The state is FAULT");
st = DevState.ON;
break;

Line 1 : Use of a DevShort type (pretty simple no)

Line 3-5 : Use of a DevVarStringArray data type with 2 elements

Line 7-9 : Print DevVarStringArray data element number and value

Line 11-16 : Use of a DevVarLongStringArray data type

Line 18 : Initialisation of a DevState data with the FAULT state

Line 19 : Test on the DevState data value

Line 21 : Use the integer value associated to each enumeration label to test DevState data
Line 23 : Update DevState data value

5.2 Passing data between client and server

In order to have one definition of the CORBA operation used to send a command to a device
whatever the command data type is, TANGO uses CORBA IDL any object. The IDL type any
provides a universal type that can hold a value of arbitrary IDL types. Type any therefore allows
you to send and receive values whose types are not fixed at compile time.

Type any is often compared to a void * in C. Like a pointer to void, an any value can denote
a datum of any type. However, there is an important difference; whereas a void * denotes a
completely untyped value that can be interpreted only with advance knowledge of its type, values
of type any mainain type safety. For example, if a sender places a string value into an any, the
receiver cannot extract the string as a value of the wrong type. Attemps to read the contents of
an any as the wrong type cause a run-time error.

5.2. PASSING DATA BETWEEN CLIENT AND SERVER 49

Internally, a value of type any consists of a pair of values. One member of the pair is the actual
value contained inside the any and the other member of the pair is the type code. The type code
is a description of the value’s type. The type description is used to enforce type safety when the
receiver extracts the value. Extraction of the value succeeds only if the receiver extracts the value
as a type that matches the information in the type code.

Within TANGO, the command input and output parameters are objects of the IDL any type.
Ouly insertion/extraction of all types defined as command data types is possible into/from these
any objects.

5.2.1 C++ mapping for IDL any type

The IDL any maps to the C++ class CORBA::Any. This class contains a large number of
methods with mainly methods to insert/extract data into/from the any. It provides a default
constructor which builds an any which contains no value and a type code that indicates “no
value”. Such an any must be used for command which does not need input or output parameter.
The operator <<= is overloaded many times to insert data into an any object. The operator
>>= is overloaded many times to extract data from an any object.

Inserting/Extracting TANGO basic types

The insertion or extraction of TANGO basic types is straight forward using the <<= or >>=
operators. Nevertheless, the Tango::DevBoolean type is mapped to a unsigned char and other
IDL types are also mapped to char C++ type (The unsigned is not taken into account in
the C++ overloading algorithm). Therefore, it is not possible to use operator overloading for
these IDL types which map to C++ char. For the Tango::DevBoolean type, you must use
the CORBA::Any::from_ boolean or CORBA::Any::to_boolean intermediate objects defined in the
CORBA::Any class.

Inserting/Extracting TANGO strings

The <<= operator is overloaded for const char * and always makes a deep copy. This deep copy is
done using the CORBA::string dup function. The extraction of strings uses the >>= overloaded
operator. The main point is that the Any object retains ownership of the string, so the returned
pointer points at memory inside the Any. This means that you must not deallocate the extracted
string and you must treat the extracted string as read-only.

Inserting/Extracting TANGO sequences

Insertion and extraction of sequences also uses the overloaded <<= and >>= operators. The
insertion operator is overloaded twice: once for insertion by reference and once for insertion by
pointer. If you insert a value by reference, the insertion makes a deep copy. If you insert a value
by pointer, the Any assumes the ownership of the pointed-to memory.

Extraction is always by pointer. As with strings, you must treat the extracted pointer as
read-only and must not deallocate it because the pointer points at memory internal to the Any.

Inserting/Extracting TANGO structures

This is identical to inserting/extracting sequences.

Inserting/Extracting TANGO enumeration

This is identical to inserting/extracting basic types

50CHAPTER 5. EXCHANGING DATA BETWEEN CLIENT AND SERVER USING COMMANDS

1 CORBA::Any a;

2 Tango: :Devlong 11,12;

3 11 = 2;

4 a <<= 11;

5 a >>= 12;

6

7 CORBA: :Any b;

8 Tango: :DevBoolean bl,b2;

9 bl = true;

10 b <<= CORBA::Any::from_boolean(bl);
11 b >>= CORBA: :Any::to_boolean(b2);
12

13 CORBA: :Any s;

14 Tango: :DevString strl,str2;

15 strl = "I like dancing TANGO";
16 s <<= stri;

17 s >>= str2;

18

19 // CORBA_string_free(str2);
20 // a <<= CORBA_string_dup("Oups");
21
22 CORBA: :Any seq;
23 Tango: :DevVarFloatArray fl_arri;
24 fl_arrl.length(2);
25 fl_arri[0] = 1.0;
26 fl_arri[1] = 2.0;
27 seq <<= fl_arri;
28 const Tango::DevVarFloatArray *fl_arr_ptr;
29 seq >>= fl_arr_ptr;
30
31 // delete fl_arr_ptr;

Line 1-5 : Insertion and extraction of Tango::DevLong type

Line 7-11 Insertion and extraction of Tango::DevBoolean type using the CORBA::Any::from _boolean
and CORBA::Any::ito_boolean intermediate structure

Line 13-17 : Insertion and extraction of Tango::DevString type

Line 19 : Wrong ! You should not deallocate a string extracted from an any

Line 20 : Wrong ! Memory leak because the <<= operator will do the copy.

Line 22-29 : Insertion and extraction of Tango::DevVarxxxArray types. This is an insertion by
reference and the use of the <<= operator makes a deep copy of the sequence. Therefore, after
line 27, it is possible to deallocate the sequence

Line 31: Wrong.! You should not deallocate a sequence extracted from an any

5.2.2 The insert and extract methods of the Command class

In order to simplify the insertion/extraction into/from Any objects, small helper methods have
been written in the Command class. The signatures of these methods are :

[y

void extract(const CORBA::Any &,<Tango type> &);
2 CORBA: :Any *insert(<Tango type>);

5.2. PASSING DATA BETWEEN CLIENT AND SERVER 51

An extract method has been written for all Tango types. These method extract the data from
the Any object passed as parameter and throw an exception if the Any data type is incompatible
with the awaiting type. An insert method have been written for all Tango types. These method
create an Any object, insert the data into the Any and return a pointer to the created Any. For
Tango types mapped to sequences or structures, two insert methods have been written: one for
the insertion from pointer and the other for the insertion from reference. For Tango strings, two
insert methods have been written: one for insertion from a classical Tango::DevString type and
the other from a const Tango::DevString type. The first one deallocate the memory after the
insert into the Any object. The second one only inserts the string into the Any object.

The previous example can be rewritten using the insert/extract helper methods (We suppose
that we can use the Command class insert/extract methods)

1 Tango: :DevLong 11,12;

2 11 = 2;

3 CORBA: :Any *a_ptr = insert(1l1);

4 extract (*a_ptr,12);

5

6 Tango: :DevBoolean bl,b2;

7 bl = true;

8 CORBA: :Any *b_ptr = insert(bl);

9 extract (*b_ptr,b2);

10

11 Tango: :DevString strl,str2;

12 strl = "I like dancing TANGO";
13 CORBA: :Any *s_ptr = insert(strl);
14 extract (*s_ptr,str2);
15
16 Tango: :DevVarFloatArray fl_arri;
17 fl_arrl.length(2);
18 fl_arri[0] = 1.0;
19 fl_arri[1] = 2.0;
20 insert(fl_arrl);
21 CORBA: :Any *seq_ptr = insert(fl_arrl);
22 Tango: :DevVarFloatArray *fl_arr_ptr;
23 extract (*seq_ptr,fl_arr_ptr);

Line 1-4 : Insertion and extraction of Tango::DevLong type

Line 6-9 : Insertion and extraction of Tango::DevBoolean type

Line 11-14 : Insertion and extraction of Tango::DevString type

Line 16-23 : Insertion and extraction of Tango::DevVarxxxArray types. This is an insertion
by reference which makes a deep copy of the sequence. Therefore, after line 20, it is possible to
deallocate the sequence

5.2.3 Java mapping for IDL any type

The IDL any maps to the Java class org.omg.CORBA.Any . This class has all the neces-
sary methods to insert and extract instances of IDL native types (short, int, float, string..). The
method name to insert native IDL types is insert <type name> (insert_short(), insert_float(),
insert_string()). They all take a reference to the element to be inserted as argument. The

52CHAPTER 5. EXCHANGING DATA BETWEEN CLIENT AND SERVER USING COMMANDS

method name to extract basic types is extract <type name> (extract short(), extract float() or
extract_string()). These extract methods do not need argument and return a reference to the ex-
tracted data. If the extraction operations have a mismatched type, the CORBA BAD OPERATION
exception is raised. An “any” object is constructed with the create any() method of the CORBA
“orb” object. This orb object represents the Object Request Broker. Within a Tango device server,
you can retrieve it with a method of the TangoUtil class described in [6].

Inserting/Extracting TANGO basic types and strings

The insertion or extraction of TANGO basic types and strings is straight forward using the insert
or extract methods provided by the org.omg.CORBA.Any class.

Inserting/Extracting TANGO sequences, structures or enumeration.

The IDL to Java compiler generates Helper classes for all types defined in the IDL file. The gener-
ated classes name is the name of the type followed by the suffix Helper (DevVarCharArrayHelper,
DevLongHelper). Classes are generated even for types which directly map to native Java types.
Several static methods needed to manipulate the type are supplied in these classes. These include
“Any” insert and extract operations for the type. For a data type <typename>>, the insert and
extract method are :

e public static void insert(org.omg.CORBA.Any a, <typename> t) {..}

e public static <typename> extract(Any a) {...}

Such classes exists for all the TANGO data types. The following code fragment is an example of
the insertion/extraction in/from Any object with Java

Any a = TangoUtil.instance().get_orb().create_any();
int 11 = 1;

a.insert_long(1l1);

int 12 = a.extract_long();

DevLongHelper.insert(a,11);
int 13 = DevlLongHelper.extract(a);

0 ~NO O WN -

9 Any s = TangoUtil.instance().get_orb().create_any();
10 String str = new String("I like dancing TANGOD");

11 s.insert_string(str);

12 String str_ex = s.extract_string();

14 DevStringHelper.insert(s,str);
15 String str_help = DevStringHelper.extract(s);

17 Any arr = TangoUtil.instance().get_orb().create_any();
18 int[] array = new int[2];

19 array[0] = 1;

20 arrayl[1] = 2;

21 DevVarLongArrayHelper.insert(arr,array);

22 int[] array_ext = DevVarLongArrayhelper.extract(arr);

5.2. PASSING DATA BETWEEN CLIENT AND SERVER 53

Line 1 : Create an instance of the Any class.

Line 3 : Insert a DevLong data into the Any object. The method name is insert long because
this is a method to insert an IDL long type into the object even if the IDL long type maps to an
int in Java.

Line 4 : Extract a DevLong type from the Any

Line 6-7 : Insert or Extract DevLong data type to/from the Any object using the Helper class.

Line 9-12: Create an Any object and a DevString data. Insert and Extract this string into/from
the Any using the method provided by the any object

Line 14-15 : Insert or Extract string into/from the Any using methods provided by the Helper
class

Line 17-22 : The same thing for data of the DevVarLongArray type. Note that DevVarLon-
gArray is not a basic IDL type and the Any class does not provide method to insert/extract data
of this type into/from the Any. The use of the methods provided by the Helper class is mandatory
in this case.

5.2.4 The insert and extract methods of the Command class for Java

In order to simplify the insertion/extraction into/from Any objects, small helper methods have
been written in the Command class. The signatures of these methods are :

1 <java type> extract_<Tango type_name>(Any) ;
Any insert(<Tango type>);

An extract method has been written for all Tango types. These method extract the data from
the Any object passed as parameter and throw an exception if the Any data type is incompatible
with the awaiting type. All these extract methods take the same input parameter and only differ
in their return type which is not taken into account for method overloading. Therefore, the name
of the method depends on the type of the data to be extracted. The following is some example of
these method names and signatures :

e int extract_DevLong(Any) throws DevFailed for the DevLong type
o int[] extract_DevVarULongArray(Any) throws DevFailed for DevVarULongArray type
o String[] extract_DevVarStringArray(Any) throws DevFailed for DevVarStringArray

An insert method have been written for all Tango types. These method create an Any object,
insert the data into the Any and return a pointer to the created Any. The previous example can
be rewritten using the insert/extract helper methods (We suppose that we can use the Command
class insert /extract methods)

int 11 = 1;
Any a = insert(11);
int 12 = extract_DevLong(a);

String str = new String("I like dancing TANGO");
Any s = insert(str);
String str_ex = extract_DevString(s);

O 00N O WN -

int[] array = new int[2];

54CHAPTER 5. EXCHANGING DATA BETWEEN CLIENT AND SERVER USING COMMANDS

10 arrayl[0] = 1;

11 array[1] = 2;

12 Any arr = insert(array);

13 int[] array_ext = extract_DevVarLongArray(arr);

Line 1-3 : Insertion/Extraction of DevLong type
Line 5-7 : Insertion/Extraction of DevString type
Line 9-13 : Insertion/Extraction of DevVarLongArray type

5.3 C++ memory management

The rule described here are valid for variable length command data types like Tango::DevString
or all the Tango:: DevVarxxxxArray types.

The method executing the command must allocate the memory used to pass data back to the
client or use static memory (like buffer declares as object data member. If necessary, the ORB
will deallocate this memory after the data have been sent to the caller. Fortunately, for incoming
data, the method have no memory management responsabilities. The details about memory
management given in this chapter assume that the insert/extract methods of the Tango::Command
class are used and only the method in the device object is discussed.

5.3.1 For string

Example of a method receiving a Tango::DevString and returning a Tango::DevString is detailed
just below

1 Tango::DevString MyDev::dev_string(Tango: :DevString argin)
2 {

3 Tango: :DevString argout;

4

5 cout << "the received string is " << argin << endl;
6

7 string str("Am I a good Tango dancer 7");

8 argout = new char[str.size() + 1];

9 strcpy (argout,str.c_str());

10

11 return argout;

12 %

Note that there is no need to deallocate the memory used by the incoming string. Memory for
the outgoing string is allocated at line 8, then it is initialised at the following line. The memory
allocated at line 8 will be automatically freed by the usage of the Command::insert() method.
Using this schema, memory is allocated/freed each time the command is executed. For constant
string length, a statically allocated buffer can be used.

1 Tango::ConstDevString MyDev: :dev_string(Tango: :DevString argin)
2 A
3 Tango: :ConstDevString argout;

5.3. C++ MEMORY MANAGEMENT 55

cout << "the received string is " << argin << endl;

argout = "Hello world";
return argout;

© 00N O O

A Tango::ConstDevString data type is used. It is not a new data Tango data type. It has
been introduced only to allows Command::insert() mehod overloading. The argout pointer is
intialised at line 7 with memory statically allocated. In this case, no memory will be freed by
the Command::insert() method. There is also no memory copy in the contrary of the previous
example. A buffer defined as object data member can also be used to set the argout pointer.

5.3.2 For array/sequence

Example of a method returning a Tango::DevVarLongArray is detailed just below

1 Tango::DevVarLongArray *MyDev::dev_array()

2 {

3 Tango: :DevVarLongArray *argout = new Tango::DevVarLongArray();
4

5 long output_array_length = ...;

6 argout->length(output_array_length) ;

7 for (int i = 0;i < output_array_length;i++)
8 (xargout) [i] = i;

9

10 return argout;

11}

In this case, memory is allocated at line 3 and 6. Then, the sequence is populated. The
sequence is created and returned using pointer. The Command::insert() method will insert the
sequence into the CORBA::Any object using this pointer. Therefore, the CORBA::Any object will
take ownership of the allocated memory. It will free it when it will be destroyed by the CORBA
ORB after the data have been sent away. It is also possible to use a statically allocated memory
and to avoid copying in the sequence used to returned the data. This is explained in the following
example assuming a buffer of long data is declared as device data member and named buffer.

Tango: :DevVarLongArray *MyDev::dev_array()
{

Tango: :DevVarLongArray *argout;

long output_array_length = ...;
argout = create_DevVarLongArray(buffer,output_array_length);
return argout;

O ~NO O WN =

56CHAPTER 5. EXCHANGING DATA BETWEEN CLIENT AND SERVER USING COMMANDS

At line 3 only a pointer to a DevVarLongArray is defined. This pointer is set at line 6 using
the create_ DevVarLongArray() method. This method will create a sequence using this buffer
without memory allocation nor copying. The Command::insert() method used here is the same
than the one used in the previous example. The sequence is created in a way that the destruction
of the CORBA::Any object in which the sequence will be inserted will not destroy the buffer. The
following create xxx methods are defined in the DeviceImpl class :

| Method name | data type |
create_ DevVarCharArray() | unsigned char
create_ DevVarShort Array/() short
create_ DevVarLongArray() long
create_ DevVarFloatArray() float
create_ DevVarDoubleArray() double
create_ DevVarUShortArray() | unsigned short
create_ DevVarULongArray() | unsigned long

5.3.3 For string array/sequence

Example of a method returning a Tango::DevVarStringArray is detailed just below

1 Tango::DevVarStringArray *MyDev: :dev_str_array()

2 1

3 Tango: :DevVarStringArray *argout = new Tango::DevVarStringArray();
4

5 argout->length(3);

6 (*argout) [0] = CORBA::string_dup("Rumba");

7 (*argout) [1] = CORBA::string_dup("Waltz");

8 string str("Jerck");

9 (*argout) [2] = CORBA::string_dup(str.c_str());
10 return argout;

11}

Memory is allocated at line 3 and 5. Then, the sequence is populated at lines 6,7 and 9.
The usage of the CORBA::string _dup function also allocates memory. The sequence is created
and returned using pointer. The Command::insert() method will insert the sequence into the
CORBA::Any object using this pointer. Therefore, the CORBA::Any object will take ownership
of the allocated memory. It will free it when it will be destroyed by the CORBA ORB after the
data have been sent away. For portability reason, the ORB uses the CORBA ::string_free function
to free the memory allocated for each string. This is why the corresponding CORBA ::string _dup
or CORBA ::string_alloc function must be used to reserve this memory.It is also possible to use a
statically allocated memory and to avoid copying in the sequence used to returned the data. This
is explained in the following example assuming a buffer of pointer to char is declared as device
data member and named int buffer.

1 Tango::DevVarStringArray *DocDs: :dev_str_array()
2 {

3 int_buffer[0] = "first";

4 int_buffer[1] = "second";

5.4. REPORTING ERRORS o7

Tango: :DevVarStringArray *argout;
argout = create_DevVarStringArray(int_buffer,2);
return argout;

© 00N oW,

The intermediate buffer is initialised with statically allocated memory at lines 3 and 4. The
returned sequence is created at line 7 with the create DevVarStringArray() method. Like for
classical array, the sequence is created in a way that the destruction of the CORBA::Any object
in which the sequence will be inserted will not destroy the buffer.

5.3.4 For Tango composed types

Tango supports only two composed types which are Tango::DevVarLongStringArray and Tango::DevVarDoubleString:
These types are translated to C++ structure with two sequences. It is not possible to use memory

statically allocated for these types. Each structure element must be intialised as described in the

previous sub-chapters using the dynamically allocated memory case.

5.4 Reporting errors

Tango uses the C++ and Java try/catch plus exception mechanism to report errors. Two kind of
errors can be transmitted between client and server :

1. CORBA system error. These exceptions are raised by the ORB and indicates major failures
(A communication failure, An invalid object reference...)

2. CORBA user exception. These kind of exceptions are defined in the IDL file. This allows
an exception to contain an arbitrary amount of error information of arbitrary type.

TANGO defines one user exception called DevFailed. This exception is a variable length array
of DevError type (a sequence of DevError). The DevError type is a four fields structure. These
fields are :

1. A string describing the type of the error. This string replaces an error code and allows a
more easy management of include files.

2. The error severity. It is an enumeration with the three values which are WARN, ERR or
PANIC.

3. A string describing in plain text the reason of the error

4. A string describing the origin of the error

The Tango::DevFailed type is a sequence of DevError structures in order to transmit to the
client what is the primary error reason when several classes are used within a command. The
sequence element 0 must be the DevError structure describing the primary error. A method called
print_exception() defined in the Tango::Except class prints the content of exception (CORBA
system exception or Tango::DevFailed exception). Some static methods of the Tango::Except
class called throw_exception() can be used to throw Tango::DevFailed exception. With Java,
these functions are static methods of the Except class. Details on these methods can be found in

[6]-

58 CHAPTER 5. EXCHANGING DATA BETWEEN CLIENT AND SERVER USING COMMANDS

5.4.1 Example of throwing exception using C++

This example is a piece of code from the command_handler() method of the DeviceImpl class.
An exception is thrown to the client to indicate that the requested command is not defined in the
command list.

TangoSys_0OMemStream o;

o0 << "Command " << command << " not found" << ends;

Except: :throw_exception((const char *)"API_CommandNotFound",
o.str(),
(const char *)"DeviceClass::command_handler");

OO WN -

Line 1 : Build a memory stream. Use the TangoSys MemStream because memory streams
are not managed the same way between Windows and Unix

Line 3 : Build the reason string in the memory stream

Line 4-5 : Throw the exception to client using one of the throw exception static method of
the Except class. This throw exception method used here allows the definition of the error type
string, the reason string and the origin string of the DevError structure. The remaining DevError
field (the error severity) will be set to its default value. Note that the first and third parameters
are casted to a const char * Standard C+-+ defines that such a string is already a const char *
but the GNU C++ compiler (release 2.95) does not use this type inside its function overloding
but rather uses a char * which leads to calling the wrong function.

5.4.2 Example of throwing exception using Java

This example is a fragment of code from the command_ handler() method of the Devicelmpl class.
An exception is thrown to the client to indicate that the requested command is not defined in the
command list.

StringBuffer o = new StringBuffer ("Command ");
o.append (command) ;
o.append (" not found");

Except.throw_exception("API_CommandNotFound",
o.toString(),
"DeviceClass.command_handler");

~NOo O WwWN -

Line 1-3 : Build a string with a message describing the error. The StringBuffer class is used
instead of the String class because the StringBuffer class allows dynamic resizing of the string.

Line 5-7 : Throw the exception to client using the static throw exception method of the
Except class. The throw _exception method used here allows the definition of the reason string,
the description string and the origin string of the DevError structure. The remaining DevError
field (the error severity) will be set to its default value.

Note that the CORBA system exception inherits from the java.lang.RuntimeException. Ex-
ception derivated from this class do not need to be catched or re-thrown. This is the case for
the BAD OPERATION exception thrown when a mismatched type is used to extract data
from an Any object. CORBA user exception (like the DevFailed exception) inherits from the
java.Exception class and needs to be catched or re-thrown.

Chapter 6

Writing a device server

Writing a device server can be made easier by adopting the correct approach. This chapter will
describe how to write a device server. It is divided into the following parts : understanding the
device, defining device commands, chosing device state and writing the necessary classes. All
along this chapter, examples will be given using the stepper motor device server. Writing a device
server for our stepper motor example device means writing :

e The main function

e The class_factory method (only for C++ device server)
e The StepperMotorClass class

e The DevReadPositionCmd class

e The StepperMotor class.

All these functions and classes will be detailed. The stepper motor device server described in this
chapter supports 2 commands and 3 attributes which are :

e Command DevReadPosition implemented using the inheritance model

e Command DevReadDirection implemented using the template command model

Attribute Position (position of the first motor). This attribute is readable and is linked with
a writable attribuute (called SetPosition). When the value of this attribute is requested by
the client, the value of the associated writable attribute is also returned.

Attribute SetPosition (writable attribute linked with the Position attribute)

e Attribute Direction (direction of the first motor)

In order to also gives an example of how the database objects part of the Tango device pattern
could be used, our device have two properties. These properties are of the Tango long data types
and are names “Max” and “Min”.

6.1 Understanding the device

The first step before writing a device server is to develop an understanding of the hardware
to be programmed. The Equipment Responsible should have description of the hardware and
its operating modes (manuals, spec sheets etc.). The Equipment Responsible must also provide
specifications of what the device server should do. The Device Server Programmer should demand
an exact description of the registers, alarms, interlocks and any timing constraints which have

59

60 CHAPTER 6. WRITING A DEVICE SERVER

to be kept. It is very important to have a good understanding of the device interfacing before
starting designing a new class.

Once the Device Server Programmer has understood the hardware the next important step is
to define what is a logical device i.e. what part of the hardware will be abstracted out and treated
as a logical device. In doing so the following points of the TDSOM should be kept in mind

e Each device is known and accessed by its ascii name.

e The device is exported onto the network to be imported by applications.
e Each device belongs to a class.

e A list of commands exists per device.

e Applications use the device server api to execute commands on a device.

The above points have to be taken into account when designing the level of device abstraction.
The definition of what is a device for a certain hardware is primarily the job of the Device Server
Programmer and the Applications Programmer but can also involve the Equipment Responsible.
The Device Server Programmer should make sure that the Applications Programmer agrees with
her definition of what is a device.

Here are some guidelines to follow while defining the level of device abstraction -

e efficiency, make sure that not a too fine level of device abstraction has been chosen. If pos-
sible group as many attributes together to form a device. Discuss this with the Applications
Programmer to find out what is efficient for her application.

e hardware independency, one of the main reasons for writing device servers is to provide
the Applications Programmer with a software interface as opposed to a hardware interface.
Hide the hardware structure of the device. For example if the user is only interested in a
single channel of a multichannel device then define each channel to be a logical device. The
user should not be aware of hardware addresses or cabling details. The user is very often
a scientist who has a physics-oriented worldview and not a hardware-oriented worldview.
Hardware independency also has the advantage that applications are immune to hardware
changes to the device

e object oriented worldview, another raison d’etre behind the device server model is to
build up an object oriented view of the world. The device should resemble the user’s view
of the object as closely as possible. In the case of the ESRF’s beam lines for example, the
devices should resemble beam line scientist’s view of the machine.

e atomism, each device can be considered like an atom - is a independent object. It should
appear independent to the client even if behind the scenes it shares some hardware or software
with other objects. This is often the case with multichannel devices where the user would
like to see each channel as a device but it is obvious that the channels cannot be programmed
completely independently. The logical device is there to hide or make transparent this fact.
If it is impossible to send commands to one device without modifying another device then a
single device should be made out the two devices.

e tailored vs general, one of the philosophies of the TDSOM is to provide tailored solutions.
For example instead of writing one serial line class which treats the general case of a serial
line device and leaving the device protocol to be implemented in the client the TDSOM
advocates implementing a device class which handles the protocol of the device. This way
the client only has to know the commands of the class and not the details of the protocol.
Nothing prevents the device class from using a general purpose serial line class if it exists of
course.

6.2. DEFINING DEVICE COMMANDS 61

6.2 Defining device commands

Each device has a list of commands which can be executed by the application across the net-
work or locally. These commands are the Application Programmer’s network knobs and dials for
interacting with the device.

The list of commands to be implemented depends on the capabilities of the hardware, the list
of sensible functions which can be executed at a distance and of course the functionality required
by the application. This implies a close collaboration between the Equipment Responsible, Device
Server Programmer and the Application Programmer.

When drawing up the list of commands particular attention should be paid to the following
points

e performance, no single command should monopolise the device server for a long time (a
nominal value for long is one second). Commands should be implemented in such a way that
it executes immediately returning with a response. At best try to keep command execution
time down to less than the typical overhead of an rpc call i.e. som milliseconds. This of
course is not always possible e.g. a serial line device could require 100 milliseconds of protocol
exchange. The Device Server Programmer should find the best trade-off between the users
requirements and the devices capabilities. If a command implies a sequence of events which
could last for a long time then implement the sequence of events in another thread - don’t
block the device server.

e robustness, should be provided which allow the client to recover from error conditions and
or do a warm startup.

6.2.1 Standard commands
A minimum set of two commands exist for all devices. These commands are
e DevState which returns the state of a device
e DevStatus which returns the status of the device as a formatted ascii string

These commands have already been discussed in 4.5

6.3 Choosing device state

The device state is a number which reflects the avaibility of the device. To simplify the coding for
generic application, a predefined set of states are supported by TANGO. This list has 14 members
which are

ON
OFF
CLOSE
OPEN
INSERT
EXTRACT
MOVING
STANDBY
FAULT
INIT
RUNNING
ALARM
DISABLE
UNKNOWN

62 CHAPTER 6. WRITING A DEVICE SERVER

The names used here have obvious meaning.

6.4 Device server utilities to ease coding/debugging

The device server framework supports two set of utilities to ease the process of coding and debug-
ging device server code. These utilities are :

1. The device server verbose option

2. The device server output redirection system

Using these two facilities avoids the usage of the classical “#ifdef DEBUG” style which makes code
less readable.

6.4.1 The device server verbose option

Each device server supports a verbose option called -v. Four verbose levels are defined from 1 to
4. Level 4 is the most talkative one. If you use the -v option without specifying level, level 4 will
be assumed. A device server started with output level n will print all the message of level between
1 and n. For instance, if you start a device server using -v3 option, only the output for level 1,2
and 3 will be displayed. Output for level 4 will not be printed. If you don’t used the -v option,
the output level is set to 0. By convention, level 3 and 4 are reserved for print message embedded
into the Tango library. Level 1 and 2 are free for the user.

Choosing the output level using C++

With C++, four macros have been defined. These macros are called cout!, cout2, coutd and cout.
The first one (cout!) defines a message which should be printed only when output level 1 or more
is requested. The second one (cout2) defines a message which should be printed only when output
level 2 or more is requested. The same philosophy is used for coutd and cout4. The usage of these
coutr macros is the same than the classical cout.

cout3 << "What a nice dance" << endl;
cout3 << "What’s its name 7" << endl;

D W N -

cout << "Its name is TANGO" << endl;

Line 1-2 : The two questions are level 3 messages.

Line 4 : This print will be printed whatever the print level is.

If this piece of code is part of a device server started with a -v2 option, only the message
defined line 4 will be displayed. If the device server is started with a -v3, -v4 or -v option, the two
messages defined at lines 1 and 2 will also be displayed.

Choosing the output level using Java

With Java, four static objects inside the Util class have been defined. These objects are called
outl, out2, outd and out4. These four objects support the println method exactly as the out
object inside the System class does. The first object (out!) defines a message which should be
printed only when output level 1 or more is requested. The second one (out2) defines a message
which should be printed only when output level 2 or more is requested. The same philosophy is
used for out3 and out4. The usage of these outz objects is the same than the classical out.

6.4. DEVICE SERVER UTILITIES TO EASE CODING/DEBUGGING 63

Util.out3.println("What a nice dance");
Util.out3.println("What’s its name 7");

B W N -

System.out.println("Its name is TANGO");

Line 1-2 : The two questions are level 3 messages.

Line 4 : This print will be printed whatever the print level is.

If this piece of code is part of a device server started with a -v2 option, only the message
defined line 4 will be displayed. If the device server is started with a -v3, -v4 or -v option, the two
messages defined at lines 1 and 2 will also be displayed.

Changing the output level at run time

It is possible to change the output level at run time. You do so using commands of the dserver
device. These two commands are :

e DevSetTraceLevel. This command needs the new trace level as input parameter. Using this
command superseeds the level requested at device server process command line

e DevGetTraceLevel. This command returns the actual trace level.

6.4.2 Device server output redirection

Two commands of the dserver device allow device server output redirection. Theses two commands
are :

e DevSetTraceOutput. This command sets all the device server output used to print message
to be redirected to a file. This command needs the complete file path as input parameter.
The file is local to the computer where the device server process is running.

e DevGetTraceOutput. This command returns the name of the file used to redirect device
server process output. If no DevSetTraceOutput command has been used prior to the exe-
cution of this command, it returns a special string (“Initial Output”) to indicates that the
output is still the output defines at process startup.

6.4.3 TUsage example

These two previously described features can ease device server debugging. Suppose a device server
process is started with the following command line (UNIX command line)

Perkin id22 > /dev/null

This command line does not define any output level. Therefore the default output level is chosen
(0) and no message are printed. Sending a DevSetTraceLevel command requesting level 4 and
a DevSetTraceOutput command with a file name /tmp/server.out will make the device server
sending all the output to the /tmp/server.out file without stopping the process. The inspection
of the /tmp/server.out file will hopefully help to find the reason of the device server problem.
When the output are not needed anymore, sending a DevSetTraceOutput command with the input
parameter set to “Initial Output” followed by a DevSetTracelevel command with a requested level
of 0 will return the server to its original state.

64 CHAPTER 6. WRITING A DEVICE SERVER

6.5 Avoiding name conflicts

6.5.1 Using C++

Namespace are used to avoid name conflicts. Each device pattern implementation is defined within
its own namespace. The name of the namespace is the device pattern class name. In our example,
the namespace name is StepperMotor.

6.5.2 Using Java

Package are used to avoid name conflicts. Each device pattern implementation is defined within
its own package. The name of the package is the device pattern class name. In our example, the
package name is StepperMotor.

6.6 The device server main function
A device server main function (or method) always follows the same framework. It exactly im-
plements all the action described in chapter 4.7.5. Even if it could be always the same, it has

not been included in the library because some linkers are perturbed by the presence of two main
functions.

6.6.1 Using C++

1 #include <tango.h>

2

3 int main(int argc,char xargv[])

4 {

5

6 try

7 {

8

9 Tango::Util *tg = Tango::Util::init(argc,argv);
10

11 tg->server_init();

12

13 cout << "Ready to accept request" << endl;
14 tg->server_run();

15 ¥

16 catch (bad_alloc)

17 {

18 cout << "Can’t allocate memory!!!" << endl;
19 cout << "Exiting" << endl;
20 }
21 catch (CORBA::Exception &e)
22 {
23 Tango: :Except: :print_exception(e);
24
25 cout << "Received a CORBA::Exception" << endl;
26 cout << "Exiting" << endl;
27 ¥
28

29 return(0);

6.6. THE DEVICE SERVER MAIN FUNCTION 65

30 %

Line 1 : Include the tango.h file. This file is a master include file. It includes several other
files. The list of files included by tango.h can be found in [6]

Line 9 : Create the instance of the Tango::Util class (a singleton). Passing argc,argv to this
method is mandatory because the device server command line is checked when the Tango::Util
object is constructed.

Line 11 : Start all the device pattern creation and initialisation with the server init() method

Line 14 : Put the server in a endless waiting loop with the server run() method. In normal
case, the process should never returns from this line.

Line 16-20 : Catch all exceptions due to memory allocation error, display a message to the
user and exit

Line 21 : Catch all standard TANGO exception which could occur during device pattern
creation and intialisation

Line 23 : Print exception parameters

Line 25-26 : Print an additional message

6.6.2 Using Java

The main method can be defined in any class. There is no mandatory class where it should be de-
fined. In our StepperMotor example, the main method has been implemented in the StepperMotor
class because it is the most logical place.

1 package StepperMotor

2

3 import java.util.x*;

4 import org.omg.CORBA.x*;

5 import fr.esrf.Tango.x*;

6 1import fr.esrf.TangoDs.x*;

7

8 public class StepperMotor extends DeviceImpl implements TangoConst
9 {

10 public static void main(String[] argv)

11 {

12 try

13 {

14

15 Util tg = Util.init(argv,"StepperMotor");
16

17 tg.server_init();

18

19 System.out.println("Ready to accept request");
20
21 tg.server_run();
22 }
23 catch (OutOfMemoryError ex)
24 {
25 System.err.println("Can’t allocate memory !!!!");
26 System.err.println("Exiting");

N
~
(-

66 CHAPTER 6. WRITING A DEVICE SERVER

28 catch (UserException ex)

29 {

30 Except.print_exception(ex) ;

31

32 System.err.println("Received a CORBA user exception");
33 System.err.println("Exiting");

34 X

35 catch (SystemException ex)

36 {

37 Except.print_exception(ex) ;

38

39 System.err.println("Received a CORBA system exception");
40 System.err.println("Exiting");

41 }

42

43 System.exit(-1);

44

45 ¥

46 }

line 1 : The StepperMotor class is part of the StepperMotor package

Line 3-6 : Import several packages. The reason of importing these package will be explained
when the StepperMotor class will be detailed later in this chapter

Line 8 : Definition of the StepperMotor class (will be explained later)

Line 10 : Definition of the main method

Line 15 : Create the instance of the Util class (a singleton). Passing argv to this method is
mandatory because the device server command line is checked when the Util object is constructed.
The second argument of this init method is the device server executable name as defined in 4.7.1

Line 17 : Start all the device pattern creation and initialisation

Line 21 : Put the server in a endless waiting loop. In normal case, the process should never
returns from this line.

Line 23-27 : Catch all exceptions due to memory error and display a message to the user. It
seems strange to deal with memory allocation error with Java.The Java garbage collection system
reclaims memory only for object which have a reference count equal to zero. If, inside a program,
objects are created and stay with an object refence count different than zero, they will never be
destructed. If many of these objects are created, memory allocation errors can occurs. You may
think that the author of this manual is paranoid but have a look at [11]

Line 28-34 : Catch CORBA user exception included the TANGO DevFailed exception which
could occur during device pattern creation and intialisation

Line 30 : Use the static print_exception method of the Except class to print all the data
members of the exception object.

Line 35-41 : catch CORBA system exception.

Line 37 : Use the static print_ezception method of the Except class to print all the data
members of the exception object.

Line 43 : Exit the device server

6.7 The DServer::class_factory method (C++ specific)

As described in chapter 4.7.2, C++ device server needs a class_ factory() method. This method
creates all the device pattern implemented in the device server by calling their init() method. The
following is an example of a class_ factory method for a device server with one implementation of
the device server pattern for stepper motor device.

6.8. WRITING THE STEPPERMOTORCLASS CLASS 67

O 00 ~NO U WN =

#include <tango.h>
#include <steppermotorclass.h>

void Tango: :DServer: :class_factory()

{

add_class(StepperMotor: : StepperMotorClass: : init ("StepperMotor")) ;

Line 1 : Include the Tango master include file
Line 2 : Include the steppermotorclass class definition file

Line 7 :

Create the StepperMotorClass singleton by calling its init method and stores the

returned pointer into the DServer object. Remember that all classes for the device pattern imple-
mentation for the stepper motor class is defined within a namespace called StepperMotor.

6.8 Writing the StepperMotorClass class

6.8.1 Using C++
The class definition file

O 00N O WN -

=
A

12
13
14
15
16
17
18
19
20
21
22
23

#include <tango.h>

namespace StepperMotor

{
class StepperMotorClass : public Tango::DeviceClass
{
public:
static StepperMotorClass *init(const char *);
static StepperMotorClass *instance();
~“StepperMotorClass() {_instance = NULL;}
protected:
StepperMotorClass(string &) ;
static StepperMotorClass *_instance;
void command_factory();
void attribute_factory(vector<Tango::Attr *> &);
public:
void device_factory(const Tango::DevVarStringArray *);
s

} /* End of StepperMotor namespace */

68 CHAPTER 6. WRITING A DEVICE SERVER

Line 1 : Include the Tango master include file

Line 3 : This class is defined within the StepperMotor namespace

Line 6 : Class StepperMotorClass inherits from Tango::DeviceClass

Line 9-10 : Definition of the init and instance methods. These methods are static and can be
called even if the object is not already constructed.

Line 11: The desctructor

Line 14 : The class constructor. It is protected and can’t be called from outside the class.
Ouly the init method allows a user to create an instance of this class. See [8] to get details about
the singleton design pattern.

Line 15 : The instance pointer. It is static in order to set it to NULL during process initiali-
sation phase

Line 16 : Definition of the command_ factory method

Line 17 : Definition of the attribute factory method

Line 20 : Definition of the device factory method

The singleton related methods

1 #include <tango.h>

2

3 #include <steppermotor.h>

4 #include <steppermotorclass.h>

5

6 namespace StepperMotor

7 {

8

9 StepperMotorClass *StepperMotorClass::_instance = NULL;

10

11 StepperMotorClass: :StepperMotorClass(string &s):

12 Tango::DeviceClass(s)

13 A

14 cout2 << "Entering StepperMotorClass constructor" << endl;
15

16 cout2 << "Leaving StepperMotorClass constructor" << endl;
17 3

18

19
20 StepperMotorClass *StepperMotorClass::init(const char *name)
21 |
22 if (_instance == NULL)
23 {
24 try
25 {
26 string s(name);
27 _instance = new StepperMotorClass(s);
28 }
29 catch (bad_alloc)
30 {
31 throw;
32 X
33 }

w
r

return _instance;

6.8. WRITING THE STEPPERMOTORCLASS CLASS 69

35 }

36

37 StepperMotorClass *StepperMotorClass::instance()
38 {

39 if (_instance == NULL)

40 {

41 cerr << "Class is not initialised !!" << endl;
42 exit(-1);

43 }

44 return _instance;

45 }

Line 1-4 : include files: the Tango master include file (tango.h), the StepperMotorClass class
definition file (steppermotorclass.h) and the StepperMotor class definition file (steppermotor.h)

Line 6 : Open the StepperMotor namespace.

Line 9 : Initialise the static _instance field of the StepperMotorClass class to NULL

Line 11-18 : The class constructor. It takes an input parameter which is the controlled device
class name. This parameter is passed to the constructor of the DeviceClass class. Otherwise, the
construtor does nothing except printing a message

Line 20-35 : The init method. This method needs an input parameter which is the controlled
device class name (StepperMotor in this case). This method checks is the instance is already
constructed by testing the _instance data member. If the instance is not constructed, it creates
one. If the instance is already constructed, the method simply returns a pointer to it.

Line 37-45 : The instance method. This method is very similar to the init method except that
if the instance is not already constructed. the method print a message and abort the process.

As you can understand, it is not possible to construct more than one instance of the Stepper-
MotorClass (it is a singleton) and the init method must be called prior to any other method.

The command _factory method

Within our example, the stepper motor device supports two commands which are called DevRead-
Position and DevReadDirection. These two command takes a Tango::DevLong argument as input
and output parameter. The first command is created using the inheritance model and the second
command is created using the template command model.

1

2 void StepperMotorClass: :command_factory()

3 {

4 command_list.push_back(new DevReadPositionCmd("DevReadPosition",
5 Tango: :DEV_LONG,

6 Tango: :DEV_LONG,

7 "Motor number (0-7)",
8 "Motor position"));
9
10 command_list.push_back(
11 new TemplCommandInOut<Tango::DevLong,Tango: :DevLong>
12 ((const char *)"DevReadDirection",
13 static_cast<Tango::Lg_CmdMethPtr_Lg>
14 (&StepperMotor: :dev_read_direction),
15 static_cast<Tango::StateMethPtr>

70 CHAPTER 6. WRITING A DEVICE SERVER

16 (&StepperMotor: :direct_cmd_allowed))
17)

18 %

19

Line 4 : Creation of one instance of the DevReadPositionCmd class. The class is created with
five arguments which are the command name, the command type code for its input and output
parameters and two strings which are the command input and output parameters description.
The pointer returned by the new C++ keyword is added to the vector of available command.

Line 10-14 : Creation of the object used for the DevReadDirection command. This command
has one input and output parameter. Therefore the created object is an instance of the Tem-
plCommandInOut class. This class is a C++ template class. The first template parameter is the
command input parameter type, the second template parameter is the command output parameter
type. The second TemplCommandInOut class constructor parameter (set at line 13) is a pointer
to the method to be executed when the command is requested. A casting is necessary to store this
pointer as a pointer to a method of the DeviceImpl class!. The third TemplCommandInOut class
constructor parameter (set at line 15) is a pointer to the method to be executed to check if the
command is allowed. This is necessary only if the default behaviour (command always allowed)
does not fulfill the needs. A casting is necessary to store this pointer as a pointer to a method
of the DeviceImpl class. When a command is created using the template command method, the
input and output parameters type are determined from the template C++ class parameters.

The device factory method

The device_ factory method has one input parameter. It is a pointer to Tango::DevVarStringArray
data which is the device name list for this class and the instance of the device server process. This
list is fetch from the Tango database.

1 void StepperMotorClass::device_factory(const Tango::_DevVarStringArray *devlist_ptr)

2 {

3

4 for (long i = 0;i < devlist_ptr->length();i++)

5 {

6 cout4 << "Device name : " << (*devlist_ptr)[i] << endl;
7

8 device_list.push_back(new StepperMotor(this,

9 (*devlist_ptr) [i]));
10

11 export_device(device_list.back());

12 ¥

13 %

Line 4 : A loop for each device

Line 8 : Create the device object using a StepperMotor class constructor which needs two
arguments. These two arguments are a pointer to the StepperMotorClass instance and the device
name. The pointer to the constructed object is then added to the device list vector

Line 11 : Export device to the outside world using the ezport_ device method of the DeviceClass
class.

1 The StepperMotor clas inherits from the DeviceImpl class and therefore is a DeviceImpl

6.8. WRITING THE STEPPERMOTORCLASS CLASS 71

The attribute factory method

The rule of this method is to fullfill a vector of pointer to attributes. A reference to this vector is
passed as argument to this method.

1 void StepperMotorClass::attribute_factory(vector<Tango::Attr *> &att_list)

2 A

3 att_list.push_back(

4 new Tango::Attr("Position",

5 Tango: : DEV_LONG,

6 Tango: :READ_WITH_WRITE,
7 "SetPosition"));

8 att_list.push_back(

9 new Tango::Attr("SetPosition",

10 Tango: : DEV_LONG,
11 Tango: :WRITE)) ;

12 att_list.push_back(

13 new Tango::Attr("Direction",

14 Tango: :DEV_LONG)) ;
15 %

Line 3-7 : Build a one dimension attribute of Tango::DevLong type with an associate writable
attribute. Store the pointer to this attribute object into the attribbute pointer vector.

Line 8-11 : Build a one dimension writable attribute. Store the pointer to this attribute object
into the attribute pointer vector.

Line 12-14 : Build a one dimension attribute. Store the pointer to this attribute object into
the attribbute pointer vector.

6.8.2 Using Java
The singleton related method

1 package StepperMotor;

2

3 import java.util.x*;

4 import fr.esrf.Tango.x*;

5 import fr.esrf.TangoDs.x*;

6

7 public class StepperMotorClass extends DeviceClass implements TangoConst
8 {

9 private static StepperMotorClass _instance = null;
10
11
12 public static StepperMotorClass instance()
13 {
14 if (_instance == null)
15 {
16 System.err.println("StepperMotorClass is not initialised !!!
17 System.err.println("Exiting");

72 CHAPTER 6. WRITING A DEVICE SERVER

18 System.exit(-1);

19 }

20 return _instance;

21 }

22

23

24 public static StepperMotorClass init(String class_name) throws DevFailed
25 {

26 if (_instance == null)

27 {

28 _instance = new StepperMotorClass(class_name) ;

29 }

30 return _instance;

31 }

32

33 protected StepperMotorClass(String name) throws DevFailed

34 {

35 super (name) ;

36

37 Util.out2.println("Entering StepperMotorClass constructor");
38

39 Util.out2.println("Leaving StepperMotorClass constructor");
40 }

41 %

Line 1 : This class is part of the StepperMotor package.

Line 3-5 : Import different packages. The first one (java.lang.util) is a classical Java package
from the JDK. The second one (fr.esrf.Tango) is the package generated by the IDL compiler
from the Tango IDL file. The last one (fr.esrf.TangoDs) is the name of the package with all the
root classes of the device server framework.

Line 7 : The StepperMotorClass inherits from the DeviceClass and implements the Tan-
goConst interface. The TangoConst interface does not defines any method but simply defines
constant variables. The TangoConst interface is a member of the TangoDs package.

Line 9 : The instance pointer. It is static and private. It is intialised to NULL

Line 12-21 : The instance method. This method is very similar to the init method except that
if the instance is not already constructed. the method print a message and abort the process.

Line 24-31: The init method. This method needs an input parameter which is the controlled
device class name (StepperMotor in this case). This method checks is the instance is already
constructed by testing the instance data member. If the instance is not constructed, it creates
one. If the instance is already constructed, the method simply returns a pointer to it.

Line 33-40 : The class constructor which is protected. It takes an input parameter which is
the controlled device class name. This parameter is passed to the constructor of the DeviceClass
class (line 35). Otherwise, the construtor does nothing except printing a message

As you can understand, it is not possible to construct more than one instance of the Stepper-
MotorClass (it is a singleton) and the init method must be called prior to any other method.

The command_factory method

Within our example, the stepper motor device supports two commands which are called DevRead-
Position and DevReadDirection. These two command takes a Tango DevLong argument as input
and output parameter. The first command is created using the inheritance model and the second
command is created using the template command model.

6.8. WRITING THE STEPPERMOTORCLASS CLASS 73

1 public void command_factory()

2 A

3 String str = new String("DevReadPosition");

4 command_list.addElement (new DevReadPositionCmd(str,
5 Tango_DEV_LONG, Tango_DEV_LONG,
6 "Motor number (0-7)",

7 "Motor position"));

8

9 str = new String("DevReadDirection");

10 command_list.addElement (new TemplCommandInOut (str,
11 "dev_read_direction",

12 "direct_cmd_allowed"));

13 }

Line 4: Creation of one instance of the DevReadPositionCmd class. The class is created
with five arguments which are the command name, the command type code for its input and
output parameters and the parameters description (input and output). The Tango DEV _LONG
constant is defined in the TangoConst interface. The reference returned by the new Java keyword
is added to the vector of available command via the addElement method of the Java Vector class.

Line 10-12 : Creation of the object used for the DevReadDirection command. This command
has one input and output parameter. Therefore the created object is an instance of the Tem-
plCommandInOut class. The second TemplCommandInOut class constructor parameter (set at
line 11) is the method name to be executed when the command is requested. The third Tem-
plCommandInOut class constructor parameter (set at line 12) is the method name to be executed
to check if the command is allowed. This is necessary only if the default behaviour (command al-
ways allowed) does not fulfill the needs. When a command is created using the template command
method, the input and output parameter types are determined from the given method declaration.

The device factory method

The device_ factory method has one input parameter. It is a pointer to a DevVarStringArray2data,
which is the device name list for this class and the instance of the device server process. This list
is fetch from the Tango database.

1 public void device_factory(String[] devlist) throws DevFailed

2 A

3 for (int i = 0;i < devlist.length;i++)

4 {

5 Util.out4.println("Device name : " + devlist[i]);

6

7 device_list.addElement (new StepperMotor (this,

8 devlist[i],

9 "A Tango motor",
10 DevState.ON,
11 "The motor is ON"));
12
13 export_device(((DeviceImpl) (device_list.lastElement())));
14 X
15 %

2DevVarStringArray maps to Java String]]

74 CHAPTER 6. WRITING A DEVICE SERVER

Line 3 : A loop for each device

Line 7 : Create the device object using a StepperMotor class constructor which needs five
arguments. These five arguments are a reference to the StepperMotorClass instance, the device
name, the device description, the device original state and the device original status. The reference
to the constructed object is then added to the device list vector with the addElement method of
the java.util.Vector class.

Line 13 : Export device to the outside world using the ezport_ device method of the DeviceClass
class. The lastElement method of the java.util.Vector class returns a reference to an object of the
java Object class. It must be casted before being passed to the ezport device method

The attribute factory method

The rule of this method is to fullfill a vector of references to attribute. A reference to this vector
is passed to this method. The Tango core classes will use this vector to build all the attributes
related objects (An instance of the MultiAttribute class and one Attribute or WAttribute object
for each attribute defined in this vector).

1 public void attribute_factory(Vector att) throws DevFailed
2 A

3 att.addElement (new Attr ("Position",

4 Tango_DEV_LONG,

5 AttrWriteType.READ_WITH_WRITE,
6 "SetPosition"));

7 att.addElement (new Attr("SetPosition",

8 Tango_DEV_LONG,

9 AttrWriteType.WRITE));

10 att.addElement (new Attr("Direction",

11 Tango_DEV_LONG)) ;

12 3}

Line 3-6 : Build a one dimension attribute of TANGO DEV_LONG type with an associate
writable attribute. Store a reference to this attribute in the vector.

Line 7-9 : Build a one dimension writable attribute and store a reference to it in the vector

Line 10-11 : Build a one dimension attribute and store a reference to it in the vector

6.9 The DevReadPositionCmd class

6.9.1 Using C++
The class definition file

#include <tango.h>

namespace StepperMotor

{

DU WN -

class DevReadPositionCmd : public Tango::Command

6.9. THE DEVREADPOSITIONCMD CLASS 75

7 Ao

8 public:

9 DevReadPositionCmd(const char *,Tango::CmdArgType,

10 Tango: :CmdArgType,

11 const char *,const char *);

12 ~“DevReadPositionCmd () {};

13

14 virtual bool is_allowed (Tango::DeviceImpl *, const CORBA::Any &);
15 virtual CORBA::Any xexecute (Tango::DeviceImpl *, const CORBA::Any &);
16 3;

17

18 } /* End of StepperMotor namespace */

Line 1 : Include the tango master include file

Line 3 : Open the StepperMotor namespace.

Line 6 : The DevReadPositionCmd class inherits from the Tango::Command class

Line 9 : The constructor

Line 12 : The destructor

Line 14 : The definition of the is allowed method. This method is not necessary if the default
behaviour implemented by the default is_allowed method fullfil the requirements. The default
behaviour is to always allows the command execution (always return true).

Line 15: The definition of the execute method

The class constructor

The class constructor does nothing. It simply invoke the Command constructor by passing it its
five arguments which are:

1. The command name

2. The command input type code

3. The command output type code

4. The command input parameter description

5. The command output parameter description

If the command does not have input or output parameter, it is not possible to use the Command
class constructor defined with five parameters. In this case, the command constructor execute the
Command class constructor with three elements (class name, input type, output type) and set the
input or output parameter description fields with the set in_type desc or set out type desc
Command class methods.

The is _allowed method

In our example, the DevReadPosition command is allowed only if the device is in the ON state.
This method receives two argument which are a pointer to the device object on which the command
must be excuted and a reference to the command input Any object. This method returns a boolean
which must be set to true if the command is allowed. If this boolean is set to false, the DeviceClass
command_handler method will automatically send an exception to the caller.

76 CHAPTER 6. WRITING A DEVICE SERVER

1 bool DevReadPositionCmd::is_allowed(Tango: :DeviceImpl *device,
2 const CORBA::Any &in_any)
3 {

4 if (device->get_state() == Tango::0N)

5 return true;

6 else

7 return false;

8 1}

Line 4 : Call the get state method of the DeviceImpl class which simply returns the device
state

Line 5 : Authorise command if the device state is ON

Line 7 : Refuse command execution in all other cases.

The execute method

This method receives two arguments which are a pointer to the device object on which the com-
mand must be executed and a reference to the command input Any object. This method returns
a pointer to an any object which must be initialised with the data to be returned to the caller.

1 CORBA::Any *DevReadPositionCmd: :execute(

2 Tango: :DeviceImpl *device,

3 const CORBA::Any &in_any)

4 A

5 cout2 << "DevReadPositionCmd::execute(): arrived" << endl;
6 Tango: :DevLong motor;

7

8 extract (in_any,motor) ;

9 return insert(

10 (static_cast<StepperMotor *>(device))->dev_read_position(motor));
11 3}

Line 8 : Extract incoming data from the input any object using a Command class extract
hepler method. If the type of the data in the Any object is not a Tango::DevLong, the extract
method will throw an exception to the client.

Line 9 : Call the stepper motor object method which execute the DevReadPosition command
and insert the returned value into an allocated Any object. The Any object allocation is done by
the insert method which return a pointer to this Any.

6.9.2 Using Java

The class constructor

The class constructor does nothing. It simply invoke the Command constructor by passing it its
five arguments which are:

1. The command name
2. The command input type code

3. The command output type code

6.9. THE DEVREADPOSITIONCMD CLASS 7

4. The command input parameter description

5. The command output parameter description

If the command does not have input or output parameter, it is not possible to use the Command
class constructor defined with five parameters. In this case, the command constructor execute the
Command class constructor with three elements (class name, input type, output type) and set the
input or output parameter description fields with the set in_type desc or set out type desc
Command class methods.

The is_allowed method

In our example, the DevReadPosition command is allowed only if the device is in the ON state.
This method receives two argument which are a reference to the device object on which the
command must be excuted and a reference to the command input Any object. This method
returns a boolean which must be set to true if the command is allowed. If this boolean is set
to false, the DeviceClass command_ handler method will automatically send an exception to the
caller.

1 package StepperMotor;

2

3 import org.omg.CORBA.*;

4 import fr.esrf.Tango.x*;

5 import fr.ersf.TangoDs.x*;

6

7 public class DevReadPositionCmd extends Command implements TangoConst
8 A

9 public boolean is_allowed(DeviceImpl dev, Any data_in)
10 {

11 if (dev.get_state() == DevState.ON)

12 return(true);

13 else

14 return(false);

15 X

16

17 3

Line 1 : This class is part of the StepperMotor package

Line 3-5 : Import different packages. The first one (org.omg.CORBA) is a package which
contains all the CORBA related classes. The second one (fr.esrf.Tango) is the package generated
by the IDL compiler from the Tango IDL file. The last one (fr.ersf.TangoDs) is the name of the
package with all the root classes of the device server pattern.

Line 7 : The DevReadPositionCmd class inherits from the Command class and implements
the TangoConst interface. The TangoConst interface does not defines any method but simply
defines constant variables. The TangoConst interface is a member of the TangoDs package.

Line 11 : Call the get state method of the Devicelmpl class which simply returns a reference
to the device state

Line 12 : Authorise command if the device state is ON

Line 14 : Refuse command execution in all other cases.

78 CHAPTER 6. WRITING A DEVICE SERVER

The execute method

This method receives two arguments which are a reference to the device object on which the
command must be executed and a reference to the command input Any object. This method
returns a reference to an any object which must be initialised with the data to be returned to the
caller.

1 public Any execute(DeviceImpl device,Any in_any) throws DevFailed

2 {

3 Util.out2.println("DevReadPositionCmd.execute(): arrived");

4

5 int motor = extract_DevLong(in_any);

6

7 return insert(((StepperMotor) (device)).dev_read_position(motor));
8 }

Line 5 : Extract incoming data from the input any object
Line 7 : Call the stepper motor object method which execute the DevReadPosition command,
insert its return value into an any and return.

6.10 The StepperMotor class

6.10.1 Using C++
The class definition file

1 #include <tango.h>

2

3 #define AGSM_MAX_MOTORS 8 // maximum number of motors per device
4

5 namespace StepperMotor

6 {

7

8 class StepperMotor: public Tango::DeviceImpl

9 {

10 public :

11 StepperMotor(Tango: :DeviceClass *,string &) ;

12 StepperMotor(Tango: :DeviceClass *,const char *);
13 StepperMotor(Tango: :DeviceClass *,const char *,const char *);
14 ~“StepperMotor() {};

15

16 long dev_read_position(long);

17 long dev_read_direction(long);

18 bool direct_cmd_allowed(const CORBA::Any &) ;

19
20 virtual Tango::DevState dev_state();
21 virtual Tango::ConstDevString dev_status();
22

23 virtual void always_executed_hook();

6.10. THE STEPPERMOTOR CLASS 79

24

25 virtual void read_attr_hardware(vector<long> &attr_list);
26 virtual void write_attr_hardware(vector<long> &attr_list);
27 virtual void read_attr(Tango::Attribute &attr);
28

29 virtual void init_device();

30

31 void get_device_properties();

32

33 protected :

34 long axis[AGSM_MAX_MOTORS] ;

35 long position[AGSM_MAX_MOTORS];

36 long direction[AGSM_MAX_MOTORS];

37 long state[AGSM_MAX_MOTORS];

38

39 Tango: :DevLong *attr_Position_read;

40 Tango: :DevLlong *attr_Direction_read;

41 Tango: :DevLlong attr_SetPosition_write;

42

43 Tango: :Devlong min;

44 Tango: :DevLong max;

45 };

46

47 } /* End of StepperMotor namespace */

Line 1 : Include the Tango master include file

Line 5 : Open the StepperMotor namespace.

Line 8 : The StepperMotor class inherits from the Devicelmpl class

Line 11-13 : Three different object constructors

Line 14 : The destructor

Line 16 : The method to be called for the execution of the DevReadPosition command. This
method must be declared as virtual if it is needed to redefine it in a class inheriting from Step-
perMotor. See chapter 9.2 for more details about inheriting.

Line 17 : The method to be called for the execution of the DevReadDirection command

Line 18 : The method called to check if the execution of the DevReadDirection command is
allowed. This method is necessary because the DevReadDirection command is created using the
template command method and the default behaviour is not acceptable

Line 20 : Redefinition of the dev_state. This method is used by the DevState command

Line 21 : Redefinition of the dev_status. This method is used by the DevStatus command

Line 23 : Redefinition of the always executed hook method. This method is the place to code
mandatory action which must be executed prior to any command.

Line 25-27 : Attribute related methods

Line 29 : Definition of the init_ device method.

Line 31 : Definition of the get device properties method

Line 34-44 : Data members.

Line 39-40 : Pointers to data for readable attributes Position and Direction

Line 41 : Data for the SetPosition attribute

Line 43-44 : Data members for the two device properties

The constructors

Three constructors are defined here. It is not mandatory to defined three constructors. But at
least one is mandatory. The three constructors take a pointer to the StepperMotorClass instance

80

CHAPTER 6. WRITING A DEVICE SERVER

as first parameter®. The second parameter is the device name as a C+-+ string or as a classical
pointer to char array. The third parameter necessary only for the third form of constructor is the
device description string passed as a classical pointer to a char array.

O o0 ~NOU B WN -

WWWwwWoWwowaowaowaowaewlnoNdNOMMMNMNOMMMNOMNONMNERERRRRR R B B B
OOV D WNR,ROOWONOARWNR,OWOWOWNOOO D WNR O

#include <tango.h>
#include <steppermotor.h>

namespace StepperMotor

{

StepperMotor: : StepperMotor (Tango
:Tango: :DeviceImpl(cl,s.c_str())
{

init_device();

}

StepperMotor: : StepperMotor (Tango
:Tango: :DeviceImpl(cl,s)
{

init_device();

}

StepperMotor: : StepperMotor (Tango
:Tango: :DeviceImpl(cl,s,d)
{

init_device();

}

void StepperMotor::init_device()

{

::DeviceClass

::DeviceClass

::DeviceClass

cout << "StepperMotor: :StepperMotor ()

long i;

for (i=0; i< AGSM_MAX_MOTORS; i++)

{
axis[i] = 0;
position[i] = 0;
direction[i] = 0;
}

get_device_properties();

s

*cl,string &s)

*cl,const char *s)

*cl,const char *s,const char *d)

create " << device_name << endl;

Line 1-2 : Include the Tango master include file (tango.h) and the StepperMotor class definition
file (steppermotor.h)

Line 4 : Open the StepperMotor namespace

Line 7-11 : The first form of the class constructor. It execute the Tango::Devicelmpl class
constructor with the two parameters. Note that the device name passed to this constructor as

3The StepperMotorClass inherits from the DeviceClass and therefore is a DeviceClass

6.10. THE STEPPERMOTOR CLASS 81

a C++ string is passed to the Tango::Devicelmpl constructor as a classical C string. Then the
init_ device method is executed.

Line 13-17 : The second form of the class constructor. It execute the Tango::DeviceImpl class
constructor with its two parameters. Then the init device method is executed.

Line 19-23: The third form of constructor. Again, it execute the Tango::DeviceImpl class
constructor with its three parameters. Then the init_device method is executed.

Line 25-39 : The init_ device method. All the device data initialisation is done in this method.
The device properties are also retrieved from database with a call to the get device_properties
method at line 38.

The methods used for the DevReadDirection command

The DevReadDirection command is created using the template command method. Therefore,
there is no specific class needed for this command but only one object of the TemplCommandI-
nOut class. This command needs two methods which are the dev_read direction method and the
direct_cmd_ allowed method. The direct cmd_allowed method defines here implements exactly
the same behaviour than the default one. This method has been used only for pedagogic issue.
The dev_read_ direction method will be executed by the execute method of the TemplCommandI-
nOut class. The direct c¢md_allowed method will be executed by the is_allowed method of the
TemplCommandInOut class.

1 1long StepperMotor::dev_read_direction(long axis)

2 {

3 if (axis < 0 || axis > AGSM_MAX_MOTORS)

4 {

5 coutl << "Steppermotor::dev_read_direction(): axis out of range !";
6 coutl << endl;

7 TangoSys_0OMemStream o;

8

9 o << "Axis number " << axis << " out of range" << ends;
10 throw_exception((const char *)'"StepperMotor_OutOfRange",
11 o.str(),

12 (const char *)"StepperMotor::dev_read_direction");
13 X

14

15 return direction[axis];

16 %

17

18

19 bool StepperMotor::direct_cmd_allowed(const CORBA::Any &in_data)
20 {
21 cout?2 << "In direct_cmd_allowed() method" << endl;
22
23 return true;
24 }
25

Line 1-16 : The dev read_ direction method

Line 5-12 : Throw exception to client if the received axis number is out of range

Line 7 : A TangoSys OMemStream is used as stream. The TangoSys OMemStream has been
defined in improve portability across platform. For Unix like operating system, it is a ostrtream

82 CHAPTER 6. WRITING A DEVICE SERVER

type. For operating system with a full implementation of the standard library, it is a ostringstream
type.

Line 19-24 : The direct cmd_allowed method. The command input data is passed to this
method in case of it is needed to take the decision. This data is still packed into the CORBA Any
object.

The write attribute related method

To enable writing of writable attributes, the StepperMotor class must re-define a method called
write_ attr _hardware(). The aim of this method is to write the hardware. This method receives
a vector of long as parameters. These long data are the indexes of the attributes to be written
into the main attribute vector stored in the MultiAttribute object. Methods of the MultiAttribute
class allows the retrieval of the the correct attribute object from these indexes. The value to be
written is stored in the WAttribute object and can be retrieved with WAttribute class methods
called get write_wvalue(). A data member called attr <Attribute _name>_ write is foreseen to
temporary store this extracted value.

1 void StepperMotor::write_attr_hardware(vector<long> &attr_list)

2 A

3 cout2 << "In write_attr_hardware for " << attr_list.size();
4 cout2 << " attribute(s)" << endl;

5

6 for (long i = 0;i < attr_list.size();i++)

7 {

8 Tango: :WAttribute &att = dev_attr->get_w_attr_by_ind(attr_list[i]);
9 string att_name = att.get_name();

10

11 if (att_name == "SetPosition")

12 {

13 att.get_write_value(attr_SetPosition_write);
14 cout2 << "Attribute SetPosition value = ";
15 cout2 << attr_SetPosition_write << endl;

16 position[0] = attr_SetPosition_write;

17 }

18 }

19 }

Line 6 : A loop on each attribute to be written

Line 8-9: Retrieve attribute name

Line 11: A test on attribute name

Line 13 : Retrieve new attribute value

Line 16 : Set the hardware (very simple in our example)

The read attribute related methods

To enable reading of attributes, the StepperMotor class must re-define two methods called read_ attr hardware()
and read_ attr(). The aim of the first one is to read the harware. It will be called only once at the
beginning of each read _attributes CORBA call. The second method aim is to build the exact data
for the wanted attribute and to store this value into the Attribute object. This method will be
called for each attribute to be read. Special care has been taken in order to minimize the number
of data copy and allocation. The data passed to the Attribute object as attribute value is passed

6.10. THE STEPPERMOTOR CLASS 83

using pointers. It must be allocated by the method* and the Attribute object will not free this
memory. Data members called attr _<Attribute name> read are foreseen for this usage. As for
the write attr hardware() method, the read attr hardware() method receives a vector of long
which are indexes into the main attributes vector of the attributes to be read. The read_ attr()
method receives a reference to the Attribute object.

O© 00N O WwN

=
(Ao

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

{

}

void StepperMotor::read_attr_hardware(vector<long> &attr_list)

cout2 << "In read_attr_hardware for " << attr_list.size();
cout2 << " attribute(s)" << endl;

for (long i = 0;i< attr_list.size();i++)

{
string attr_name =
dev_attr->get_attr_by_ind(attr_list[i]).get_name();
if (attr_name == "Position")
{
attr_Position_read = &(position[0]);
}
else if (attr_name == "Direction")
{
attr_Direction_read = &(direction[0]);
}
}

void StepperMotor::read_attr(Attribute &attr)

{

}

string &attr_name = attr.get_name();
cout2 << "In read_attr for attribute " << attr_name << endl;

if (attr_name == "Position")
{

attr.set_value(attr_Position_read);
}
else if (attr_name == "Direction")
{

attr.set_value(attr_Direction_read);
}

Line 6 : A loop on each attribute to be read

Line 8 : Get attribute name

Line 11 : Test on attribute name

Line 13 : Read hardware (pretty simple in our case)

41t can also be data declared as object data members or memory declared as static

84 CHAPTER 6. WRITING A DEVICE SERVER

Line 25 : Get attribute name
Line 28 : Test on attribute name
Line 30 : Set attribute value in Attribute object

Retrieving device properties

Retrieving properties is farily simple with the use of the database object. Each Tango device is
an agregate with a DbDevice object (see figure 4.1). This has been grouped in a method called
get _device_properties(). The classes and methods of the Dbxxx objets are described in the Tango
APT documentation.

1 void DocDs::get_device_property()

2 {

3 Tango::DbData data;

4 data.push_back (DbDatum("Max")) ;
5 data.push_back (DbDatum("Min")) ;
6

7 get_db_device()->get_property(data) ;
8

9 if (datal[0].is_empty()==false)
10 datal[0] >> max;
11 if (datal[1].is_empty()==false)
12 datal[1] >> min;
13 %

Line 4-5 : Two DbDatum (one per property) are stored into a DbData object

Line 7 : Call the database to retrieve properties value

Line 9-10 : If the Max property is defined in the database, extract its value from the DbDatum
object and store it in a device data member

Line 11-12 : If the Min property is defined in the database, extract its value from the DbDatum
object and store it in a device data member

The remaining methods

The remaining methods are the dev_ state, dev_ status, always_executed hook and dev_read_ position
methods. The dev_ state method parameters are fixed. It does not receive any input parameter
and must return a Tango DevState data type. The dev_ status parameters are also fixed. It does
not receive any input parameter and must return a Tango string. The always executed hook re-
ceives nothing and return nothing. The dev_read_ position method input parameter is the motor
number as a long and the returned parameter is the motor position also as a long data type.

long StepperMotor::dev_read_position(long axis)

{

if (axis < 0 || axis > AGSM_MAX_MOTORS)

{
coutl << "Steppermotor::dev_read_position(): axis out of range !";
coutl << endl;

O 00 ~NO O WN -

TangoSys_0OMemStream o;

6.10. THE STEPPERMOTOR CLASS 85

10

11 o << "Axis number " << axis << " out of range" << ends;
12 throw_exception((const char *)"StepperMotor_OutOfRange",
13 o.str(),

14 (const char *)"StepperMotor::dev_read_position");
15 }

16

17 return position[axis];

18 %

19

20 void always_executed_hook()

21 |

22 cout2 << "In the always_executed_hook method << endl;

23 }

24

25 Tango_DevState StepperMotor::dev_state()

26 {

27 cout2 << "In StepperMotor state command" << endl;

28 return Tango::DeviceImpl::dev_state();

29 }

30

31 Tango_DevString StepperMotor: :dev_status()

32 A

33 cout2 << "In StepperMotor status command" << endl;

34 return Tango::DeviceIlmpl::dev_status();

35 }

Line 1-18 : The dev_read_ position method

Line 6-14 : Throw exception to client if the received axis number is out of range

Line 9 : A TangoSys OMemStream is used as stream. The TangoSys OMemStream has been
defined in improve portability across platform. For Unix like operating system, it is a ostrtream
type. For operating system with a full implementation of the standard library, it is a ostringstream
type.

Line 20-23 : The always executed hook method. It does nothing. It has been included here
only as pedagogic usage.

Line 25-29 : The dev_state method. It does exectly what the default dev state does. It has
been included here only as pedagogic usage

Line 31-35 : The dev_ status method. It does exectly what the default dev_ status does. It has
been included here only as pedagogic usage

6.10.2 Using Java
The constructor

The constructor take a reference to the StepperMotorClass instance as first parameter®. The
second parameter is the device name as a Java string.

1 package StepperMotor;
2
3 import java.util.x*;

5The StepperMotorClass inherits from the DeviceClass and therefore is a DeviceClass

86 CHAPTER 6. WRITING A DEVICE SERVER

4 import org.omg.CORBA.x*;

5 import fr.esrf.Tango.x;

6 import fr.esrf.TangoDs.x*;

7

8 public class StepperMotor extends DeviceImpl implements TangoConst

9 A

10 protected final int SM_MAX_MOTORS = 8;

11

12 protected int[] axis = new int[SM_MAX_MOTORS];
13 protected int[] position = new int[SM_MAX_MOTORS];
14 protected int[] direction = new int[SM_MAX_MOTORS];
15 protected int[] state = new int[SM_MAX_MOTORS];
16

17 protected int[] attr_Direction_read = new int[1];
18 protected int[] attr_Position_read = new int[1];
19 protected int attr_SetPosition_write;

20

21

22 StepperMotor (DeviceClass cl,String s,String desc,

23 DevState state,String status) throws DevFailed

24 {

25 super(cl,s,desc,state,status);

26 init_device();

27 }

28

29 public void init_device()

30 {

31 System.out.println("StepperMotor() create motor " + dev_name);
32

33 int i;

34

35 for (i=0; i< SM_MAX_MOTORS; i++)

36 {

37 axis[i] = 0;

38 position[i] = 0;

39 direction[i] = 0;

40 state[i] = 0;

41 }

42

43 }

44 %

Line 3-6: Import different packages. The first one (java.lang.util) is a classical Java package
from the JDK. The second one (org.omg.CORBA) is a package which contains all the CORBA
related classes. The third one (fr.esrf.Tango) is the package generated by the IDL compiler from
the Tango IDL file. The last one (fr.esrf.TangoDs) is the name of the package with all the root
classes of the device server pattern.

Line 8 : The StepperMotor class inherits from the Devicelmpl class and implements the Tan-
goConst interface. The TangoConst interface does not defines any method but simply defines
constant variables. The TangoConst interface is a member of the TangoDs package.

Line 10 : Define an internal constant

Line 12-15 : Device internal variable

6.10. THE STEPPERMOTOR CLASS 87

Line 17-19 : Device internal variable linked to attributes

Line 22-27 : The class constructor. It execute the DeviceImpl class constructor with five
parameters. Then the init_ device method is executed.

Line 29-43 : The init_ device method. All the device data initialisation is done in this method.

The methods used for the DevReadDirection command

The DevReadDirection command is created using the template command method. Therefore,
there is no specific class needed for this command but only one object of the TemplCommandI-
nOut class. This command needs two methods which are the dev_read_ direction method and the
direct_cmd_ allowed method. The direct c¢md_allowed method defines here implements exactly
the same behaviour than the default one. This method has been used only for pedagogic issue.
The dev_read_ direction method will be executed by the ezecute method of the TemplCommandI-
nOut class. The direct cmd_ allowed method will be executed by the is_ allowed method of the
TemplCommandInOut class.

1 public int dev_read_direction(int axis) throws DevFailed

2 1

3 if (axis < 0 || axis > SM_MAX_MOTORS)

4 {

5 Util.outl.println("Steppermotor.dev_read_direction(): axis out of ra
6

7 StringBuffer o = new StringBuffer("Axis number ");

8 o.append(axis) ;

9 o.append(" out of range");

10

11 Except.throw_exception("StepperMotor_AxisOutOfRange",
12 o.toString(),

13 "StepperMotor.dev_read_direction()");
14 }

15

16 return direction[axis];

17 3

18

19 public boolean direct_cmd_allowed(Any data_in)
20 {
21 Util.out2.println("In StepperMotor.direct_cmd_allowed method");
22
23 return true;
24 }

Line 1-17 : The dev_read_ direction method

Line 3-14 : Throw exception to client if the received axis number is out of range

Line 19-24 : The direct _cmd_allowed method. The command input data is passed to this
method iin case of it is needed to take the decision. This data is still packed into the CORBA
Any object.

The write attribute related method

To enable writing of writable attributes, the StepperMotor class must re-define a method called
write_ attr _hardware(). The aim of this method is to write the hardware. This method receives a

88 CHAPTER 6. WRITING A DEVICE SERVER

vector of Integer objects as parameters. These data are the indexes of the attributes to be written
into the main attribute vector stored in the MultiAttribute object. Methods of the MultiAttribute
class allow the retrieval of the the correct attribute object from these indexes. The value to be
written is stored in the WAttribute object and can be retrieved with WAttribute class methods
called get zz write_wvalue(). A data member called attr <Attribute name>_write is foreseen
to temporary store this extracted value.

1 public void write_attr_hardware(Vector attr_list)

2 {

3 Util.out2.println("In write_attr_hardware for "+attr_list.size()+" attribute
4

5 for (int i = 0;i < attr_list.size();i++)

6 {

7 int ind = ((Integer) (attr_list.elementAt(i))).intValue();

8 WAttribute att = dev_attr.get_w_attr_by_ind(ind);

9 String att_name = att.get_name();

10

11 if (att_name.equals("SetPosition") == true)

12 {

13 attr_SetPosition_write = att.get_lg_write_value();

14 Util.out2.println("Attribute SetPosition value = "+attr_SetF
15 position[0] = attr_SetPosition_write;

16 }

17 }

18 %

Line 5 : A loop on each attribute to be written

Line 7-9 : Retrieve attribute name

Line 11 : A test on attribute name

Line 13 : Retrieve new attribute value

Line 15 : Set the hardware (very simple in our example)

The read attribute related methods

To enable reading of attributes, the StepperMotor class must re-define two methods called read_ attr hardware()

and read_ attr(). The aim of the first one is to read the harware. It will be called only once at the
beginning of each read _attributes CORBA call. The second method aim is to build the exact data
for the wanted attribute and to store this value into the Attribute object. This method will be
called for each attribute to be read. Special care has been taken in order to minimize the number
of data copy and allocation. The data passed to the Attribute object as attribute value is passed
using pointers. It must be allocated by the method® and the Attribute object will not free this
memory. Data members called attr_ <Attribute _name> read are foreseen for this usage. As for
the write_attr_hardware() method, the read_ attr_hardware() method receives a vector of long
which are indexes into the main attributes vector of the attributes to be read. The read_ attr()
method receives a reference to the Attribute object.

1 public void read_attr_hardware(Vector attr_list)

2 {

1t can also be data declared as object data members or memory declared as static

6.10. THE STEPPERMOTOR CLASS 89

© 00 ~NO U bW

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Util.out2.println("In read_attr_hardware for "+attr_list.size()+" attributef
for (int i = 0;i< attr_list.size();i++)
{
int ind = ((Integer) (attr_list.elementAt(i))).intValue();
String attr_name = dev_attr.get_attr_by_ind(ind).get_name();
if (attr_name == "Position")
{
attr_Position_read[0] = position[0];
}
else if (attr_name == "Direction")
{
attr_Direction_read[0] = direction[0];
}
}
}
public void read_attr (Attribute attr) throws DevFailed
{
String attr_name = attr.get_name();
Util.out2.println("In read_attr for attribute "+attr_name);
if (attr_name.equals("Position") == true)
{
attr.set_value(attr_Position_read);
}
else if (attr_name.equals("Direction") == true)
{
attr.set_value(attr_Direction_read) ;
}
}

Line 4 : A loop on each attribute to be read

Line 6 -7:

Get attribute name

Line9 : Test on attribute name

Line 11 :
Line 23 :
Line 25 :
Line 27 :

Read hardware (pretty simple in our case)
Get attribute name

Test on attribute name

Set attribute value in Attribute object

Retrieving device properties

Retrieving properties is farily simple with the use of the database object. Each Tango device is
an agregate with a DbDevice object (see figure 4.1). This has been grouped in a method called
get_device_ properties(). The classes and methods of the Dbxxx objets are described in the Tango
APIT documentation.

void public get_device_property() throws DevFailed

{

String[] prop_names = {"Max","Min"};

90 CHAPTER 6. WRITING A DEVICE SERVER

5 DbDatum[] res_value = db_dev.get_property(prop_names);
6

7 if (res_value[0].is_empty() == false)

8 min = res_value[0].extractInt();

9 if (res_value[1].is_empty() == false)

10 max = res_value[1l].extractInt();

11}

Line 3 : Define the names of the properties to be retrieved

Line 5 : Call the database to retrieve properties value

Line 7-8 : If the Max property is defined in the database, extract its value from the DbDatum
object and store it in a device data member

Line 9-10 : If the Min property is defined in the database, extract its value from the DbDatum
object and store it in a device data member

The remaining methods

The remaining methods are the dev_ state, dev_ status, always_ executed hook() and dev_read_ position
methods. The dev_ state method parameters are fixed. It does not receive any input parameter

and must return a DevState data type. The dev_ status parameters are also fixed. It does not re-
ceive any input parameter and must return reference to a Java string. The always _ezecuted_hook
receives nothing and return nothing The dev_ read_ position method input parameter is the motor
number as an int and the returned parameter is the motor position also as an int data type.

1 int dev_read_position(int axis) throws DevFailed

2 {

3

4 if (axis < 0 || axis > SM_MAX_MOTORS)

5 {

6 Util.outl.println("Steppermotor.dev_read_position(): axis out of ran
7

8 StringBuffer o = new StringBuffer("Axis number ");

9 o.append(axis) ;

10 o.append(" out of range");

11

12 Except.throw_exception("StepperMotor_AxisOutOfRange",
13 o.toString(),

14 "StepperMotor.dev_read_position()");
15 }

16

17 return position[axis];

18 %

19
20 public void always_executed_hook()
21 |
22 Util.out2.println("In always_executed_hook method");
23 }
24
25 public DevState dev_state() throws DevFailed
26 {
27 Util.out2.println("In StepperMotor state command");

6.11. SOURCE FILES MANAGEMENT 91

28 return super.dev_state();

29 }

30

31 public String dev_status() throws DevFailed

32 {

33 Util.out2.println("In StepperMotor status command");
34 return super.dev_status();

35 }

Line 1-18 : The dev_read_ position method

Line 4-15 : Throw exception to client if the received axis number is out of range

Line 20-23 : The always_ ezecuted hook method.It does nothing. It has been included here
only as pedagogic usage.

Line 25-29 : The dev_state method. It does exectly what the default dev state does. It has
been included here only as pedagogic usage

Line 31-35 : The dev_ status method. It does exectly what the default dev status does. It has
been included here only as pedagogic usage

6.11 Source files management

Tango uses CVS as source file management system. To ease device server developper work, some
tools have been written to ease CVS use. These tools are :

prjcreate This command initialise a new project in the CVS repository
prjin It records into CVS database a new project release

prjout Extract the last release of a project

prjadd To add file(s) to an existing project

prjremove To remove file(s) from an existing project

prjdiff Summarises difference between project files in the working directory and in the CVS
repository

These tools are self documented. To get a minimun help, simply type the tool name and hit the
return key. In the ESRF file system structure, they are stored in the /segfs/tango/bin directory.
You can find more information about CVS in [12].

92

CHAPTER 6. WRITING A DEVICE SERVER

Chapter 7

Device server under Windows

Two kind of programs are available under Windows. These kinds of programs are called console
application or Windows application. A console application is started from a MS-DOS window and
is very similar to classical UNIX program. A Windows application is most of the time not started
from a MS-DOS window and is generally a graphical application without standard input/output.
Writing a device server in a console application is straight forward following the rules described in
the previous sub-chapters. Writing a device server in a Windows application needs some changes
detailed in the following sub-chapters.

7.1 The Tango device server graphical interface

Within the Windows operating system, most of the running application has a window user inter-
face. This is also true for the Windows Tango device server. Using or not this interface is up to
the device server programmer. The choice is done with an argument to the server init() method
of the Tango::Util class. This interface is pretty simple and is based on three windows which are :

e The device server main window
e The device server console window
e The device server help window

7.1.1 The device server main window

This window looks like :

93

94 CHAPTER 7. DEVICE SERVER UNDER WINDOWS

Tango device server : opcfandy M=l E3
Eile %iew Debug Help

Tango
Device
Server

European Synchrotron Radiation Facility (ESRF)
CORBA based device server
Developped by Tango team

Four menus are available in this window. The File menu allows the user to exit the device
server. The View menu allows you to display/hide the device server console window. The Debug
menu allows the user to change the server output verbose level. All the outputs goes to the console
window even if it is hidden. The Help menu displays the help window. The device server name is
displayed in the window title. The text displayed at the bottom of the window has a default value
(the one displayed in this window dump) but may be changed by the device server programmer
using the set main_window_text() method of the Tango::Util class. If used, this method must
be called prior to the call of the server_init() method. Refer to [6] for a complete description of
this method.

7.1.2 The console window

This window looks like :

opclandy - Console

1 device(s) defined -
Device name : etfopctl

Entering MultiAttribute class constructor for device etfopcii

Leaving MultiAttribute class constructor

Fluids::Fluids() create device etfopcil

DeviceClass:export_device() arrived

Leaving Device Class:export_device method()
DeviceClass::export_device() arrived

Leaving Device Class:export_device method() -

It simply displays all the output of the coutz used in the device server.

7.2. MFC DEVICE SERVER 95

7.1.3 The help window

This window looks like :

'I_ TAMNGO device server
Ds

Device server : opcfandy

TANGO release xy
TAMGO IDL definition release @ 1
Senverrelease Dy

European Synchrotron Radiation Facility (ESRF)

This window displays

7.2

The device server name
The Tango library release
The Tango IDL definition release

The device server release. The device server programmer may set this release number using
the set_server wersion() method of the Tango::Util class. If used, this must be done prior
to the call of the server init() method. If the set server wersion() method is not used, x.y
is displays as version number. Refer to [6] for a complete description of this method.

MPFC device server

There is no main function within a classical MFC program. Most of the time, your application is
represented by one instance of a C++ class which inherits from the MFC CWinApp class. This
CWinApp class has several methods that you may overload in your application class. For a device
server to run correctly, you must overload two methods of the CWinApp class. These methods
are the InitInstance() and EzitInstance() methods. The rule of these methods is obvious following
their names.

Remember that if the Tango device server graphical user interface is used, you
must link your device server with the Tango windows resource file. This is done by
adding the Tango resource file to the Project Settings/Link/Input/Object, library modules window
in VC++.

7.2.1 The InitInstance method

The code to be added here is the equivalent of the code written in a classical main() function.
Don’t forget to add the tango.h file in the list of included files.

1 BOOL FluidsApp::InitInstance()

2 A

3 AfxFnableControlContainer () ;
4

96

© 0 ~N oW,

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

#ifdef

#else

#endif

CHAPTER 7. DEVICE SERVER UNDER WINDOWS

// Standard initialization

// If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.

_AFXDLL
Enable3dControls(); // Call this when using MFC in a she
Enable3dControlsStatic(); // Call this when linking to MFC statically

Tango::Util *tg;

try

{
tg = Tango::Util::init(m_hInstance,m_nCmdShow) ;
tg->server_init(true);
tg->server_run();

}

catch (bad_alloc)

{
MessageBox ((HWND)NULL, "Memory error","Command line" ,MB_ICONSTOP);
return(FALSE) ;

}

catch (Tango::DevFailed &e)

{
MessageBox ((HWND)NULL,,e.errors[0] .desc.in() ,"Command line" ,MB_ICONST
return(FALSE) ;

}

catch (CORBA::Exception &)

{
MessageBox ((HWND)NULL, "Exception CORBA","Command line",MB_ICONSTOP) ;
return(FALSE) ;

}

m_pMainWnd = new CWnd;
m_pMainWnd->Attach(tg->get_ds_main_window());

return TRUE;

Line 19 : Initialise Tango system. This method also analises the argument used in command

line.

Line 21 : Create Tango classes requesting the Tango Windows graphical interface to be used

Line 23 : Start Network listenner. Note that under NT, this call returns in the contrary of
UNIX like operating system.

Line 26-30 : Display a message box in case of memory allocation error and leave method with
a return value set to false in order to stop the process

Line 31-35 : Display a messag ebox in case of error during server ionitialisation phase.

Line 36-40 : Display a message box in case of error other than memory allocation. Leave
method with a return value set to false in order to stop the process.

7.2. MFC DEVICE SERVER 97

Line 37-38 : Create a MFC main window and attach the Tango graphical interface main window
to this MFC window.

7.2.2 The ExitInstance method

This method is called when the application is stopped. For Tango device server, its rule is to
destroy the Tango::Util singleton if this one has been correctly constructed.

1 int FluidsApp::ExitInstance()

2 A

3 bool del = true;

4

5 try

6 {

7 Tango::Util *tg = Tango::Util::instance();
8 }

9 catch(Tango: :DevFailed)
10 {
11 del = false;
12 }
13
14 if (del == true)
15 delete (Tango::Util::instance());
16
17 return CWinApp::ExitInstance();
18 %

Line 7 : Try to retrieve the Tango::Util singleton. If this one has not been constructed correctly,
this call will throw an exception.

Line 9-12 : Catch the exception in case of incomplete Tango::Util singleton construction

Line 14-15 : Delete the Tango::Util singleton. This will unregister the Tango device server
from the Tango database.

Line 17 : Execute the ExitInstance method of the CWinApp class.

If you dont’t want to use the Tango device server graphical interface, do not pass any parameter
to the server init() method and instead of the code display in lines 37 and 38 in the previous
example of the InitInstance() method, use your own code to initialise your own application.

7.2.3 Example of how to build a Windows device server MFC based

This sub-chapter gives an example of what it is needed to do to build a MFC Windows device
server. Rather than being a list of actions to stricly follow, this is some general rules of how using
VC++ to build a Tango device server using MFC.

1. Create your device server using Pogo. For a class named MyMotor, the following files
will be needed : class_factory.cpp, MyMotorClass.h, MyMotorClass.cpp, MyMotor.h and
MyMotor.cpp.

2. On a Windows computer running VC++, create a new project of type “MFC app Wizard
(exe)” using static MFC libs. Ask for a dialog based project without ActiveX controls.

3. Copy the five files generated by Pogo to the Windows computer and add them to your project

98 CHAPTER 7. DEVICE SERVER UNDER WINDOWS

4. Remove the dialog window files (xxxDlg.cpp and xxxDlg.h), the Resource include file and
the resource script file from your project

5. Add #include <stdafx.h> as first line of the include files list in class_ factory.cpp, MyMo-
torClass.cpp and MyMotor.cpp file. Also add your own directory and the Tango include
directory to the project precompiler include directories list.

6. Enable RTTI in your project settings (see chapter 8.1.2)

7. Change your application class:

(a) Add the definition of an EzitInstance method in the declaration file. (xxx.h file)

(b) Remove the include of the dialog window file in the xxx.cpp file and add an include of
the Tango master include files (tango.h)

(¢) Replace the InitInstance() method as described in previous sub-chapter. (xx.cpp file)
(d) Add an ExitInstance() method as described in previous sub-chapter (xxx.cpp file)

8. Add all the libraries needed to compile a Tango device server (see chapter 8.1.2) and the
Tango resource file to the linker Object/Libraries modules.

7.3 Win32 application

Even if it is more natural to use the C++ structure of the MFC class to write a Tango device
server, it is possible to write a device server as a Win32 application. Instead of having a main()
function as the application entry point, the operating system, provides a WinMain() function as
the application entry point. Some code must be added to this WinMain function in order to
support Tango device server. Don’t forget to add the tango.h file in the list of included files.

int APIENTRY WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR 1pCmdLine,
int nCmdShow)

MSG msg;

1

2

3

4

5 {
6

7 Tango::Util *tg;
8

9

try
10 {
11 tg = Tango::Util::init(hInstance,nCmdShow) ;
12
13 string txt;
14 txt = "Blabla first line\n";
15 txt = txt + "Blabla second line\n";
16 txt = txt + "Blabla third line\n";
17 tg->set_main_window_text (txt);
18 tg->set_server_version("2.2");
19
20 tg->server_init (true);
21
22 tg->server_run();
23

7.4. DEVICE SERVER AS NT SERVICE 99

25 catch (bad_alloc)

26 {

27 MessageBox ((HWND)NULL, "Memory error","Command line" ,MB_ICONSTOP);
28 return (FALSE);

29 }

30 catch (Tango::DevFailed &e)

31 {

32 MessageBox ((HWND)NULL,e.errors[0] .desc.in() ,"Command line" ,MB_ICONST
33 return (FALSE);

34 }

35 catch (CORBA::Exception &)

36 {

37 MessageBox ((HWND)NULL, "Exception CORBA","Command line",MB_ICONSTOP) ;
38 return(FALSE) ;

39 }

40

41 while (GetMessage(&msg, NULL, 0, 0))

42 {

43 TranslateMessage (&msg) ;

44 DispatchMessage (&msg) ;

45 }

46

47 delete tg;

48

49 return msg.wParam;

50 }

Line 11 : Create theTango::Util singleton

Line 13-18 : Set parameters for the graphical interface

Line 20 : Initialise Tango device server requesting the display of the graphical interface

Line 22 : Run the device server

Line 25-39 : Display a message box for all ther kinds of error during Tango device server
initialisation phase and exit WinMain function.

Line 41-45 : The Windows message loop

Line 47 : Delete the Tango::Util singleton. This class destructor unregissters the device server
from the Tango database.

Remember that if the Tango device server graphical user interface is used, you
must link your device server with the Tango windows resource file. This is done by
adding the Tango resource file to the Project Settings/Link/Input/Object, library modules window
in VC++.

If you don’t want to use the tango device server graphical user interface, do not use any
parameter in the call of the server init() method and do not link your device server with the
Tango Windows resource file.

7.4 Device server as NT service

With Windows NT, if you want to have processes wich survive to logoff sequence and/or are
automatically started during computer startup sequence, you have to write them as service. It is
possible to write Tango device server as service. You need to

1. Write a class which inherits from a pre-written Tango class called NTService. This class
must have a start method.

100

CHAPTER 7. DEVICE SERVER UNDER WINDOWS

2. Write a main function following a predefined skeleton.

7.4.1 The service class

It must inherits from the NTService class and defines a start method. The NTService class must
be constructed with one argument which is the device server executable name. The start method
has three arguments which are the number of arguments passed to the method, the argument list
and a reference to an object used to log info in the NT event system. The first two args must be
passed to the Tango::Util::init method and the last one is used to log error or info messages. The

class definition file looks like

O 00 ~NO U b WN -

[
o

#include <tango.h>
#include <ntservice.h>

class MYService: public Tango::NTService

{
public:
MYService(char *);

void start(int,char **,0B::Logger_ptr);

Line 1-2 : Some include files

Line 4 : The MY Service class inherits from Tango::NTService class
Line 7 : Constructor with one parameter

Line 9 : The start() method

The class source code looks like

0O ~NO O WN -

#include <myservice.h>
#include <tango.h>
#include <ob/logger.h>

using namespace std;

MYService: :MYService(char *exec_name) :NTService(exec_name)

{
}
void MYService::start(int argc,char *xargv,0B::Logger_ptr log)
{
Tango: :Util *tg;
try
{

Tango::Util::_service = true;

tg = Tango::Util::init(argc,argv);

tg->server_init();

7.4. DEVICE SERVER AS NT SERVICE 101

21

22 tg->server_run();

23 }

24 catch (bad_alloc)

25 {

26 logger_->error("Can’t allocate memory to store device object");
27 X

28 catch (Tango: :DevFailed &e)

29 {

30 logger_->error(e.errors[0] .desc.in());
31 }

32 catch (CORBA::Exception &)

33 {

34 logger_->error ("CORBA Exception");

35 }

36 }

Line 7-9 : The MYService class constructor code.

Line 16 : Set to true the _service static variable of the Tango::Util class.

Line 18-22 : Classical Tango device server startup code

Line 24-35 : Exception management. Please, note that within a service. it is not possible to
print data on a console. This method receives a reference to a logger object. This object sends all
its output to the Windows NT event system. It is used to send messages when an exception has
occured.

7.4.2 The main function

The main function is used to create one instance of the class describing the service, to check the
service option and to run the service. The code looks like :

1 #include <tango.h>

2 #include <MYService.h>

3

4 using namespace std;

5

6

7 int main(int argc,char xargv[])

8 A

9 MYService service(argv[0]);
10
11 int ret;
12 if ((ret = service.options(argc,argv)) <= 0)
13 return ret;
14
15 service.run(argc,argv) ;
16
17 return 0O;

102 CHAPTER 7. DEVICE SERVER UNDER WINDOWS

Line 9 : Create one instance of the MYService class with the executable name as parameter

Line 12 : Check service option with the options() method inherited from the NTService class.

Line 15 : Run the service. The run() method is inherited from the NTService class. This
method will after some NT initialisation sequence execute the user start() method.

7.4.3 Service options and messages

When a Tango device server is written as a Windows NT service, it supports several new options.
These option are linked to Windows N'T service usage.

Before it can be used, a service must be installed. A name and a title is associated to each
service. For Tango device server used as service, the service name is build from the executable name
followed by the underscore character and the instance name. For example, a device server service
executable file named “opc” and started with “fluids” as instance name, will be named “opc_ fluids”.
The title string is built from the service executable name followed by the sentence “Tango device
server” and the instance name between paranthesis. In the previous example, the service title will
be “opc Tango device server (fluids)”. Once a service is installed, you can configure it with the
“Services” application of the control panel. Services title are displayed by this application and
allow the user to select one specific service. Once a service is selected, it is possible to start/stop
it and to configure its startup type as manual (with the Services application) or as automatic.
When the automatic mode is chosen, the service starts when the computer is started. In this case,
the service executable code must resides on the computer local disk.

Tango device server loggs message in the Windows event system when the service is started
or stopped. You can see these messages with the “Event Viewer” application (Start->Programs-
>Administrative tools->Event Viewer) and choose the Application events.

The new options are -i, -s, -u, -h and -d.

e -i : Install the service

e s : Install the service and choose the automatic startup mode
e -u : Uninstall the service

e -h : Display help message

e -d : Run in console mode to debug service. The service must have been installed prior to
used it. The classical -v device server option can be used with the -d option.

On the command line, all these options must be used after the device server instance name (“opc
fluids -i” to install the service, “opc fluids -u” to uninstall the service, “opc fluids -v -d” to debug
the service)

7.4.4 Tango device server using MFC as Windows NT service

If your Tango device server uses MFC and must be written as a Windows NT service, follow these
rules :

e Don’t forget to add the stdafx.h file as the first file included in all the source files making
the project.

e Comment out the definition of VC_ EXTRALEAN in the stdafz.h file.
e Change the proprocessor definitions, replace _ WINDOWS by CONSOLE

e Add the /SUBSYSTEM:CONSOLE option in the linker options window of the project set-
tings.

o Add a call to initialise the MFC (AfcWinlnit()) in the service main function

7.4. DEVICE SERVER AS NT SERVICE 103

1 int main(int argc,char *argvl[])

2 A

3 if ('AfxWinInit(::GetModuleHandle (NULL) ,NULL, ::GetCommandLine(),0))
4 {

5 cerr << "Can’t initialise MFC !" << endl;
6 return -1;

7 }

8

9 service serv(argv[0]);
10
11 int ret;
12 if ((ret = serv.options(argc,argv)) <= 0)
13 return ret;
14
15 serv.run(argc,argv) ;
16
17 return 0;
18 }

Line 3 : The MFC classes are initialised with the AfzWinInit() function call.

104 CHAPTER 7. DEVICE SERVER UNDER WINDOWS

Chapter 8

Compiling, linking and executing a
TANGO device server process

8.1 Compiling and linking a C++ device server

8.1.1 On UNIX like operating system

Supported development tools
The supported compiler for Linux and Solaris is gee release 2.95.2 and above. For HP-UX, aCC

release 1.21 and above is supported. Please, note that to debug a Tango device server running
under Linux, gdb release 5 and above is needed in order to correctly handle threads.
Compiling

TANGO uses two products from the OOC! company [9](free for non-commercial usage). These
two products are called JTC? and ORBacus. JTC emulates Java like thread in a C++ software
and ORBacus is the CORBA Object Request Broker. To compile a TANGO device server, your
include search path must be set to :

e The JTC include directory

e The ORBacus include directory
e The Tango include directory

e Your development directory

ORBacus uses thread. With HP computers, the source files must be compiled with the-D _REENTRANT
and -D_CMA NOWRAPPERS _ options in order to correctly handle thread.
Linking

To build a running device server process, you need to link your code with several libraries. Three
of them are always the same whatever the operating system used is. These three libraries are:

e The Tango library (called libtango)
e The ORBacus package library (called libOB)

e The JTC package library (called libJTC)

10OC stands for Object Oriented Concept
2JTC stands for Java Thread in C++

105

106 CHAPTER 8. COMPILING, LINKING AND EXECUTING A TANGO DEVICE SERVER PROCESS

On top of that, you need additional libraries depending on the operating system :

e For HP-UX 10.20, add the cma library (libcma)

e For Solaris 7, add the posix4 library (libposix4), the socket library (libsocket), the nsl
library (libnsl) and the posix thread library (libpthread)

e For Linux (Suse 6), add the posix thread library (libpthread)

The following is an example of a Makefile for Linux. Obviously, all the paths are set to the ESRF
file system structure.

O 00 ~NO U b WN =

MOV NDOMNOMNOMNMNONNONERERRRRRR B B |2
CO VDT WNR,OWOWO~N®U DdWN RO

30
31
32
33
34
35
36

#
Makefile to generate a Tango server
#

CC = c++
BIN_DIR = suse64
TANGO_HOME = /segfs/tango

INCLUDE_DIRS = -I $(TANGO_HOME)/include/$(BIN_DIR) \

-1 .
LIB_DIRS = -L $(TANGO_HOME)/1ib/$(BIN_DIR)
CXXFLAGS = $(INCLUDE_DIRS)

LFLAGS = $(LIB_DIRS) -ltango -10B -1JTC -lpthread

SVC_0BJS = main.o \
classfactory.o \
steppermotorclass.o \
steppermotor.o

.SUFFIXES: .0 .cpp
.Cpp.o:

$(CC) $(CXXFLAGS) -c $<
all: StepperMotor

StepperMotor: $(SVC_0BJS)
$(CC) $(SVC_0BJS) -o $(BIN_DIR)/StepperMotor $(LFLAGS)

clean:
rm -f *.0 core

Line 5-7 : Define Makefile macros

Line 9-10 :

Set the include file search path

Line 12 : Set the linker library search path

8.1. COMPILING AND LINKING A C++ DEVICE SERVER 107

Line 15 : The compiler option setting

Line 16 : The linker option setting

Line 19-22 : All the object files needed to build the executable

Line 25-27 : Define rules to generate object files

Line 30 : Define a “all” dependency

Line 32-33 : How to generate the StepperMotor device server executable
Line 35-36 : Define a “clean” dependency

8.1.2 On Windows NT using Developer Studio

Supported Windows compiler for Tango is Visual C++ release 6 with its service pack number
3 installed. Most problems in building a Windows device server revolve around the /M compiler
switch family. This switch family controls which run-time library names are embedded in the
object files, and consequently which libraries are used during linking. Attemps to mix and match
compiler settings and libraries can cause link error and even if successful, may produce undefined
run-time behaviour.

Selecting the correct /M switch in Developer Studio is done through a dialog box. To open this
dialog box, click on the “Project” menu and select the “Settings” option. To change the compiler
switch click on the “C/C++" tab and select “Code Generation” from the “Category” drop-down list.
The “Use run-time library” drop-down list is used to change the compiler switch. By looking at
the string in the “Project options” edit box, you can see what the switch value is for the drop-down
list selection.

¢ Single-threaded = /ML

e Multithreaded = /MT (Supported)

Multihtreaded DLL = /MD
Debug Single-threaded = /MLd

Debug Multithreaded = /MTd (Supported)

Debug Multithreaded DLL = /MDd

Compiling a file with a value of the /M switch family will impose at link phase the use of libraries
also compiled with the same value of the /M switch family. If you compiled your source code
with the /MT option (Multihtreaded), you must link it with libraries also compiled with the /MT
option.

The ORBacus package used by TANGO, makes extensive use of exceptions and RTTI®. This
requires the /GX and /GR options be enabbled when compiling. The setting can be found in
Developper Studio in the “Project Settings” dialog box. Click on the “C/C++" tab and select
“C++ language” in the “Category” drop-down list.

ORBacus and TANGO relies on the preprocessor identifier WIN32 being defined in order to
configure itself. Normally this will already be defined in a Developper Studio created project.

To build a running device server process, you need to link your code with several libraries on
top of the Windows libraries. These libraries are:

e The Tango library (called tango.lib)
e The ORBacus packge library (called ob.lib or obd.lib)
e The JTC package library (called jtc.lib or jted.lib)

e A windows network library (wsock32.1ib)

3RTTI stands for Run Time Type Identification

108 CHAPTER 8. COMPILING, LINKING AND EXECUTING A TANGO DEVICE SERVER PROCESS

To add these libraries in Developper Studio, open the “Project Settings” dialog box and click on
the “Link” tab. Select “Input” from the “Category” drop-down list and add these library names to
the list of library in the “Object/library modules” box.

If your device server is written using the MFC, use the static release of the class library. On
top of that, for the MFC device server or a Win32 graphic application add the following library
to your link order

e The Windows common controls library called comctl32.1ib

The “Win32 Debug” or “Win32 Release” configuration that you change with the “Build/Set active
configuration” menu changes the /M switch compiler. If you select a “Win32 Debug” configuration,
use the obd.lib and jtcd.lib libraries and the tango.lib library in the debug directory (at the ESRF).
If you select the “Win32 Release” configuration, use the ob.lib and jtc.lib libraries and the tango.lib
library in the release directory (at the ESRF).

8.2 Running a C++ device server

To run a C++ Tango device server, you must set an environment variable. This environment
variable is called TANGO HOST and has a fixed syntax which is

TANGO_ HOST = <host>:<port>

The host field is the host name where the TANGO database device server is running. The
port field is the port number on which this server is listenning. For instance, a valid syntax
is TANGO _HOST=dumela:10000. For UNIX like operating system, setting environment variable
is possible with the export or setenv command depending on the shell used. For Windows NT,
setting environment variable is possible with the “Environment” tab of the “System” application
in the control panel.

8.3 Compiling a Java device server

8.3.1 Supported java release

Tango device server written using Java language needs release 1.2.2 (or above) of the Java envi-
ronment.

8.3.2 Setting the CLASSPATH

To correctly compile a Java Tango device server, the CLASSPATH environment variable must be
set to :

e The jar file with all the CORBA classes. This file is named OB.jar
e The jar file with all the Tango and TangoDs package classes. This file is named Tango.jar
e The jar file with all the JDK classes (not always necessary, could be implicit)

e Your own directory

For UNIX like operating system, setting environment variable is done with the export or setenv
command depending on the shell used. For Windows NT, setting environment variable is possible
with the “Environment” tab of the “System” application in the control panel.

8.3. COMPILING A JAVA DEVICE SERVER 109

8.3.3 Makefile

The following is an example of a Makefile for a Java Tango device server. Obviously, all the paths
are set to the ESRF file system structure.

O 00 ~NOO U b WN =

=
Ao

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

H

Makefile to generate a TANGO java device server

JAVAC = javac -classpath $(CLASSPATH):..

B

CL_LIST = DevReadPositionCmd.class \
StepperMotor.class \
StepperMotorClass.class

PACKAGE = server

#

Rule for compiling

#

.SUFFIXES: .class .java

.java.class:
$(JAVAC) $(JAVAFLAGS) $<

e
all: $ (PACKAGE)

$ (PACKAGE) : $(CL_LIST)

clean:

rm -f *.class

Line 5 : Makefile macro. The Makefile file is the same directory than the source files. As all
files are part of the StepperMotor package, it is necessary to add the top directory to the classpath.

Line 13 : The java compiler flag

Line 18 : List of class to be compiled

Line 22 : Define a dependency name

110CHAPTER 8. COMPILING, LINKING AND EXECUTING A TANGO DEVICE SERVER PROCESS

Line 28-30 : Define how source files must be compiled
Line 35 : The “all” dependency

Line 37 : The device server dependency

Line 39-40 : The “clean” dependency

8.3.4 Tango core software release number

All the Tango core classes are packaged in the Tango.jar file. A litlle utility tool called TangoVers
allows a user to know which release of the Tango core classes he(she) is using. This utility is
available only with Java 1.2 virtual machine (on apus computer at the ESRF). To run this utility,

simply type
TangoVers <path to Tango.jar file>

if the directory /segfs/tango/bin is in your PATH environment variable.

8.4 Running a Java device server

A correct setting of the CLASSPATH environment variable is not enough to run a Java Tango
device server. You must also set a Java system property. The name of the system property is
TANGO _ HOST and its syntax is the same than the syntax described in chapter 8.2. Setting a
Java system property is done by using -D option of the java interpreter command. To run a Java
Tango device server, the command line must start with

java -DTANGO_HOST=<host>:<port> xxxx

As all the device server files are part of a package, you have to run this command in the directory
above the package directory. For instance, for our StepperMotor device server started with et s
instance name, all files must be stored in a directory called StepperMotor and the command line
must be

java -DTANGO_HOST=<host>:<port> StepperMotor/StepperMotor et

run from the directory above the StepperMotor one.

Chapter 9

Advanced programming techniques

The basic techniques for implementing device server pattern are required by each device server
programmer. In certain situations, it is however necessary to do things out of the ordinary. This
chapter will look into programming techniques which permit the device server serve more than
simply the network.

9.1 Receiving signal (C++ specific)

It is UNSAFE to use any CORBA call in a signal handler. It is also UNSAFE to use some
system calls in a signal handler. Tango device server solved this problem by using threads. A
specific thread is started to handle signals. Therefore, every Tango device server is automatically
a threaded process. This allows the programmer to write the code which must be executed when
a signal is received as ordinary code.

Nevertheless, signal management is not trivial and some care have to be taken. The signal
management differs from operating system to operating system. It is not recommanded that you
install your own signal routine using any of the signal routines provided by the operationg system
calls or library.

Using Linux

The classsical thread library is used by the Tango device server. The thread management offered
by the Linux kernel and this library is a pure kernel-thread based implementation. This means
that each thread is seen as a process (each thread has a separate PID, the ps command displays one
line for each thread) even if they are not real process. For a Tango device server, a ps command
will show you three threads which are :

1. The device server main thread
2. The thread manager (created by the Linux thread library)

3. The device server signal management thread

The PID stored in the Tango database is the PID of the signal thread. All signals should be
sent to the signal thread and to kill a server from a console window, the PID of the signal thread
should be used. The Linux thread library is using the SIGUSR1 and SIGUSR2 signal for its own
purpose. It is forbidden to use these two signals in a Linux Tango device server. The Tango core
classes will refuse to install something for these two signals.

Nevertheless, the Linux thread library is not fully POSIX compliant about thread and signal
management. The POSIX specification says that an asynchronous signal must be delivered to one
of the thread of the program which does not block the signal (it is not specified which). Using
this Linux thread library, the signal is delivered to the thread it is been sent to, based on the PID

111

112 CHAPTER 9. ADVANCED PROGRAMMING TECHNIQUES

of the thread. If that thread is currently blocking the signal, the signal remains pending...This
is a problem for Tango device server under Linux using the alarm() system call. In this case,
the system will send the signal to the device server main thread and not to the device server
signal management thread. A special case of the register signal method (detailed in the next
sub-chapter) have been developped for such case. This is available only for Linux.

Using Solaris

There is no restriction on the signal to be used.

Using HP-UX

Signal and thread correctly works only for asynchronous signal. Asynchronous signals are gen-
erated asynchronously with respect to the instruction stream, and thus may arrive at any time
regadless of what the process is currently doing. SIGTERM, which is typically sent by another
process in order to terminate the target process, is an example of an asynchronous signal. Within
a Tango device server, you can use only asynchronous signal. The Tango core classes will refuse
to install something for synchronous signals. The following list is all the synchronous signal
: SIGABRT, SIGKILL, SIGILL, SIGTRAP, SIGIOT, SIGEMT, SIGFPE, SIGBUS, SIGSEGV,
SIGSYS, SIDPIPE, SIGSTOP. These signals can’t be used in HP-UX device server. The SIGV-
TALRM signal is used internally by the HP-UX package and must not be used in a Tango device
server. The ITIMER,_ VIRTUAL timer cannot be used also through the setitimer() call. However,
ITIMER_REAL or ITIMER _PROF may be used.

9.1.1 Using signal

It is possible for C++ device server to receive signals from drivers or other processes. The TDSOM
supports receiving signal at two levels: the device level and the class level. Supporting signal at
the device level means that it is possible to specify interest into receiving signal on a device basis.
This feature is supported via three methods defined in the DeviceImpl class. These methods are
called register _signal, unregister _signal and signal_handler.

The register signal method has one parameter which is the signal number. This method
informs the device server signal system that the device want to be informed when the signal
passed as parameter is received by the process. There is a special case for Linux as explained in
the previous sub-chapter. It is possible to register a signal to be executed in the a signal handler
context (with all its restrictions). This is done with a second parameter to this register signal
method. This second parameter is simply a boolean data. If it is true, the signal handler will be
executed in a signal handler context in the device server main thread. A default value (false) has
been defined for this parameter.

The unregister signal method also have an input parameter which is the signal number.
This method removes the device from the list of object which should be warned when the signal
is received by the process.

The signal _handler method is the method which is triggered when a signal is received if the
corresponding register _signal has been executed. This method is defined as virtual and can be
redefined by the user. It has one input argument which is the signal number.

The same three methods also exist in the DeviceClass class. Their action and their usage are
similar to the DeviceImpl class methods. Installing a signal at the class level does not mean that all
the device belonging to this class will receive the signal. This only means that the signal handler
method of the DeviceClass instance will be executed. This is useful if an action has to be executed
once for a class of devices when a signal is received.

The following code is an example with our stepper motor device server configured via the
database to serve three motors. These motors have the following names : id04/motor/01, id04/motor/02
and 1d04/motor/03. The signal SIGALRM (alarm signal) must be propagated only to the motor
number 2 (id04/motor/02)

9.1. RECEIVING SIGNAL (C++ SPECIFIC) 113

1 void StepperMotor::init_device()

2 {

3 cout << "StepperMotor::StepperMotor() create motor " << dev_name << endl;
4

5 long i;

6

7 for (i=0; i< AGSM_MAX_MOTORS; i++)

8 {

9 axis[i] = 0;

10 position[i] = 0;

11 direction[i] = 0;

12 }

13

14 if (dev_name == "id04/motor/02")

15 register_signal (SIGALRM) ;

16 }

17

18 StepperMotor::~StepperMotor ()

19 |
20 unregister_signal (SIGALRM) ;
21 }
22
23 void StepperMotor::signal_handler(long signo)
24 |
25 cout2 << "Inside signal handler for signal " << signo << endl;
26
27 // Do what you want here
28
29 }

The init_ device method is modified.

Line 14-15 : The device name is checked and if it is the correct name, the device is registered
in the list of device wanted to receive the SIGALARM signal.

The destructor is also modified

Line 20 : Unregister the device from the list of devices which should receives the SIGALRM
signal. Note that unregister a signal for a device which has not previously registered its interest
for this signal does nothing.

The signal _handler method is redefined

Line 25 : Print signal number

Line 27 : Do what you have to do when the signal SIGALRM is received.

If all devices must be warned when the device server process receives the signal SIGALRM,
removes line 14 in the init_ device method.

9.1.2 Exiting a device server gracefully

A device server has to exit gracefully by unregistering itself from the database. The necessary
action to gracefully exit are automatically executed on receiption of the following signal :

e SIGINT, SIGTERM, SIGHUP and SIGQUIT for device server running on HP-UX, Solaris
or Linux

114 CHAPTER 9. ADVANCED PROGRAMMING TECHNIQUES

e SIGINT, SIGTERM, SIGABRT and SIGBREAK for device server running on Windows-NT

This does not prevents device server to also register interest at device or class levels for those
signals. The user installed signal handler method will first be called before the gracefull exit.

9.2 Inheriting

This sub-chapter details how it is possible to inherit from an existing device pattern implementa-
tion. As the device pattern includes more than a single class, inheriting from an existing device
pattern needs some explanations.

Let us suppose that the existing device pattern implementation is for devices of class A. This
means that classes A and AClass already exists plus classes for all commands offered by device of
class A. One new device pattern implementation for device of class B must be written with all the
features offered by class A plus some new one. This is easily done with the inheritance. Writing a
device pattern implementation for device of class B which inherits from device of class A means :

e Write the BClass class
e Write the B class
e Write B class specific commands

e Eventually redefine A class commands

9.2.1 Using C++

The miscellaneous code fragments given belows detail only what has to be updated to support
device pattern inheritance

Writing the BClass

As you can guess, BClass has to inherit from AClass. The command_ factory method must also
be adapted.

1 namespace B

2 {

3

4 class BClass : public A::AClass

5 {

6

7 %

8

9 BClass::command_factory()
10 {
11 A::AClass: :command_factory();
12
13 command_list.push_back(....);
14 }
15

16 } /* End of B namespace */

9.2. INHERITING 115

Line 1 : Open the B namespace

Line 4 : BClass inherits from AClass which is defined in the A namespace.

Line 11 : Only the command_factory method of the BClass will be called at start-up. To
create the AClass commands, the command_ factory method of the AClass must also be executed.
This is the reason of the line

Line 13 : Create BClass commands

Writing the B class

As you can guess, B has to inherits from A.

namespace B

{

class B : public A:A

O© 00 ~NO U P WN =
-~

};
B::B(Tango: :DeviceClass *cl,const char *s):A::A(cl,s)
10 {
11 e
12 init_device();
13}
14
15 void B::init_device()
16 {
17
18 }
19

20 } /* End of B namespace */

Line 1 : Open the B namespace.
Line 4 : B inherits from A which is defined in the A namespace
Line 9 : The B constructor calls the right A constructor

Writing B class specific command

Noting special here. Write these classes as usual

Redefining A class command

It is possible to redefine a command which already exist in class A only if the command is
created using the inheritance model (but keeping its input and output argument types).
The method which really execute the class A command is a method implemented in the A class.
This method must be defined as virtual. In class B, you can redefine the method executing the
command and implement it following the needs of the B class.

9.2.2 Using Java

The miscellaneous code fragments given belows detail only what has to be updated to support
device pattern inheritance

116 CHAPTER 9. ADVANCED PROGRAMMING TECHNIQUES

Writing the BClass

As you can guess, BClass has to inherit from AClass. Some change must be done in the definition
of the init and instance methods. The command_ factory method must also be adapted.

1 public class BClass extends AClass implements TangoConst
2 {
3 public static AClass init(String name) throws DevFailed
4 {
5
6 }
7
8 public static AClass instance()
9 {
10
11 }
12
13 public void command_factory()
14 {
15 super . command_factory() ;
16
17 command_list.addElement(....);
18 }
19 };

Line 1 : BClass inherits from AClass and implements TangoConst interface

Line 3 : The return data type of the init method must be the same as the type defines in the
AClass (therefore a reference to AClass) oherwise, the compiler complains. BClass inherits from
AClass and a reference to a BClass is also a reference to the AClass

Line 8 : The return data type of the instance method must also be adapted as explained for
the init method

Line 15 : Only the command_ factory method of the BClass will be called at start-up. To
create the AClass commands, the command_ factory method of the AClass must also be executed.
This is the reason of the line

Line 17 : Create BClass commands

Writing the B class

As you can guess, B has to inherits from A. The init_device method must be adapted, the
constructor has to be modified and an instance variable must be added

public class B extends A implements TangoConst

{

boolean constructed = false;

A(DeviceClass cl,String s)
{
super(cl,s);
constructed = true;

O 00N O WN -

9.2. INHERITING 117

10 init_device();

11 }

12

13 public void init_device()

14 {

15 if (constructed == false)
16 {

17 return;

18 }

19 super.init_device();
20

21

22 }

23 1};

Line 1 : B inherits from A and implements TangoConst interface

Line 3 : A boolean initialised to false is added as instance variable

Line 8 : The constructor is modified to set the constructed boolean to true after all the super
classes have been created and before the call to the init_ device method.

Line 15-18 : The init device method immediately returns if the constructed boolean is false
(if the super classes are not correctly created)

Line 19 : The init_ device method of class A is called

Writing B class specific command

Noting special here. Write these classes as usual

Redefining A class command

It is possible to to redefine a command which already exist in class A only if the command is
created using the inheritance model (but keeping its input and output argument types). The
method which really execute the class A command is a method implemented in the A class. With
Java, it is possible to redefine all methods except those which are declared as “final”. Therefore,
in class B, you can redefine the method executing the command and implement it following the
needs of the B class. The following is an example for a command xxx which is programmed to
call a my cemd method?.

1 public class A extends Devicelmpl implements TangoConst
2 A

3 public void my_cmd(long input)

4 {

5 ¥

6 }

7

8 public class B extends A implements TangoConst
9 {

10 public void my_cmd(long input)

11 {

12 ¥

13 %

In the command ezecute method

118 CHAPTER 9. ADVANCED PROGRAMMING TECHNIQUES

Line 3 : The my_ cmd method is defined in class A

Line 10 : The my_ cmd method is redefined in class B

Inside the device pattern, the device object is created as an instance of class B2. Java will call
the my c¢md method of the B class when the command is received. It is still possible to call the
my_cmd method of the A class with the help of the Java “super” keyword inside the code of the
my_cmd method of the B class.

9.3 Using another device pattern implementation within the
same server

It is often necessary that inside the same device server, a method executing a command needs a
command of another class to be executed. For instance, a device pattern implementation for a
device driven by a serial line class can use the command offered by a serial line class embedded
within the same device server process. To execute one of the command (or any other CORBA
operations/attributes) of the serial line class, just call it as a normal client will do with the
command_inout CORBA operation. The ORB will recognize that all the devices are inside the
same process and will execute the command_inout as a local call. To retrieve the reference to the
serial line device, you can use the get device by name() method of the Tango::Util class.

string dev_name("sys/serial/2");

Tango: :DeviceImpl *dev;
Tango::Util *tg = Tango::Util::instance();
dev = tg->get_device_by_name(dev_name.c_str());

Tango: :DevState d_state = dev->state();
cout2 << "The serial line device state is " << d_state << endl;

O ~NO O WN -

Line 1 : The Tango name of the serial line device embedded within the same server
Line 5 : A reference to the serial line device is retrieved
Line 7 : Get serial line device state

2By the device_factory method of the BClass class

Appendix A

Reference part

This chapter is only part of the TANGO device server reference guide. To get refer-
ence documentation about the C++ library classes, see [6]. To get reference docu-
mentation about the Java classes, also see [6].

A.1 Device parameter

A black box, a device description field, a device state and status are associated with each TANGO
device.

A.1.1 The device black box

The device black box is managed as a circular buffer. It is possible to tune the buffer depth via a
device property. This property name is

device name/blackbox depth

A default value is hard-coded to 25 if the property is not defined. This black box depth property
is retrieved from the Tango property database during the device creation phase.

A.1.2 The device description field

There are two ways to intialise the device description field.

e At device creation time. Some constructors of the Devicelmpl class supports this field as
parameter. If these constructor are not used, the device description field is set to a default
value which is A Tango device.

e With a property. A description field defines with this method overrides a device description
defined at construction time. The property name is

device name/description

A.1.3 The device state and status

Some constructors of the DeviceImpl class allows the initialisation of device state and/or status or
device creation time. If these fields are not defined, a default value is applied. The default state
is Tango::UNKOWN, the default status is Not Initialised.

119

120 APPENDIX A. REFERENCE PART

A.2 Device class parameter

A device documentation field is also defined at Tango device class level. It is defined as Tango
device class level because each device belonging to a Tango device class should have the same
behaviour and therefore the same documentation. This field is store in the DeviceClass class. It
is possible to set this field via a class property. This property name is

class name/doc_ url

and is retrieved when instance of the DeviceClass object is created. A default value is defined for
this field.

A.3 The device black box

This black box is a help tool to ease debugging session for a running device server. The TANGO
core software records every device request in this black box. A tango client is able to retrieve the
black box contents with a specific CORBA operation availabble for every device. Each black box
entry is returned as a string with the following information :

e The date where the request has been executed by the device. The date format is dd/mm/yyyy
hh24:mi:ss:SS (The last field is the second hundredth number).

e The type of CORBA requests. In case of attributes, the name of the requested attribute
is returned. In case of operation, the operation type is returned. For “command inout”

operation, the command name is returned.

e The client host name

A.4 Automatically added commands

As already mentionned in this documentation, each Tango device supports at least two commands
which are DevState and DevStatus. The following array details command input and output data

type

| Command name | Input data type | Output data type |

DevState void Tango::DevState
DevStatus void Tango::DevString

A.4.1 The DevState command

This command gets the device state (stored in its device state data member) and returns it to
the caller. The device state is a variable of the Tango DevState type (packed into a CORBA Any
object when it is returned by a command)

A.4.2 The DevStatus command

This command gets the device status (stored in its device status data member) and returns it to
the caller. The device status is a variable of the string type.

A.5. DSERVER CLASS DEVICE COMMANDS 121

A.5 DServer class device commands

As already explained in 4.7.2, each device server process has its own Tango device. This device sup-
ports the two commands previously described plus 9 commands which are DevRestart, DevRestart-
Server, DevQueryClass, DevQueryDevice, DevKill, DevSetTraceLevel, DevGetTraceLevel, De-
vSetTraceOutput and DevGetTraceOutput. The following table give all commands input and
output data types

| Command name | Input data type | Output data type |
DevState void Tango::DevState
DevStatus void Tango::DevString
DevRestart Tango::DevString void
DevRestartServer void void
DevQueryClass void Tango::DevVarStringArray
DevQueryDevice void Tango::DevVarStringArray
DevKill void void
DevSetTraceLevel Tango::DevLong void
DevGetTraceLevel void Tango::DevLong
DevSetTraceOutput | Tango::DevString void
DevGetTraceOutput void Tango::DevString

The device description field is set to “A device server device”.

A.5.1 The DevState command

This device state is always set to ON

A.5.2 The DevStatus command

This device status is always set “The device is ON”

A.5.3 The DevRestart command

The DevRestart command restart a device. The name of the device to be re-started is the command
input parameter. The command destroys the device by calling its desctructor and re-create it from
its constructor.

A.5.4 The DevRestartServer command

The DevRestartServer command restarts all the device pattern(s) embedded in the device server
process. Therefore, all the devices implemented in the server process are destroyed and re-built!.
The network connection between client(s) and device(s) implemented in the device server process
is destroyed and re-built.

Executing this command allows a complete restart of the device server without stopping the
process.

A.5.5 The DevQueryClass command

This command returns to the client the list of Tango device class(es) embedded in the device
server. It returns only class(es) implemented by the device server programmer. The DServer
device class name (implemented by the TANGO core software) is not returned by this command.

I Their black-box is also destroyed and re-built

122 APPENDIX A. REFERENCE PART

A.5.6 The DevQueryDevice command

This command returns to the client the list of device name for all the device(s) implemented in
the device server process. The name of the DServer class device is not returned by this command.

A.5.7 The DevKill command

This command stops the device server process. In order that the client receives a last answer from
the server, this command starts a thread which will after a short delay, kills the device server
process.

A.5.8 The DevSetTraceLevel command

This command allows a remote control of the device server trace level. Its input data is the new
trace level. Setting the trace level to a value lower than 0 has the same effect than a 0 level.
Setting the trace level to a value higher than 4 has the same effect than a 4 level.

A.5.9 The DevGetTraceLevel command

This command simply returns the device server process trace level.

A.5.10 The DevSetTraceOutput command

This command allows a remote control of where the device server process send all its trace output.
The command input data is a file name. This file is created if it does not already exist. Other-
wise, it is truncated to a zero length and new output are appended to it. It is always possible
to reset the process output to the value is has at startup time by using the predefined string
Tango InitialQutput as data file name.

A.5.11 The DevGetTraceOutput command

This command returns the process output file name. If the process is using its startup time output,
the returned string is set to the predefined Tango InitialOutput string.

A.6 C+H+ specific
A.6.1 The Tango master include file (tango.h)

Tango has a master include file called
tango.h
This master include file includes the following files :
e C++ language include file : typeinfo
¢ CORBA include file : CORBA.h

e C++ streams include file :

— iostream, sstream and fstream for Windows NT

— iostream.h, strstream.h and fstream.h for the other operating systems

Some standard C++ library include files : string and vector

The main include file generated by the CORBA IDL compiler : idl/tango.h

A.6. C++ SPECIFIC 123

e The Tango database API include file : dbapi.h

e A list of other Tango include files : tango const.h, tango config.h, utils.h, device.h,
command.h, except.h, attrmanip.h and dserver.h

A.6.2 Tango specific types
Operating system free type

Some data type used in the TANGO core software are not the same under UNIX like operating
system and Windows NT. In order to have less “#ifdef” in the source code, some Tango types
have been defined. They are described in the following table.

| Type name | Unix like | Windows NT |
TangoSys MemStream ostrstream ostringstream
TangoSys_Pid pid t int
TangoSys Cout IO _ostream__withassign ostream

These types are defined in the tango config.h file

Template command model related type

As explained in 6.8, command created with the template command model uses static casting.
Many type definition have been written for these casting.

| Class name | Command allowed method (if any) | Command execute method |
TemplCommand Tango::StateMethodPtr Tango::CmdMethPtr
TemplCommandIn Tango::StateMethodPtr Tango::CmdMethPtr xxx
TemplCommandOut Tango::StateMethodPtr Tango::xxx_ CmdMethPtr
TemplCommandInOut Tango::StateMethodPtr Tango::xxx CmdMethPtr_yyy

The Tango::StateMethPtr is a pointer to a method of the Devicelmpl class which returns
a boolean and has one parameter which is a reference to a const CORBA::Any obect.

The Tango::CmdMethPtr is a pointer to a method of the Devicelmpl class which returns
nothing and needs nothing as parameter.

The Tango::CmdMethPtr_ xxx is a pointer to a method of the Devicelmpl class which
returns nothing and has one parameter. xxx must be set according to the method parameter type
as described in the next table

124 APPENDIX A. REFERENCE PART

Tango type | short cut (xxx) |
Tango::DevBoolean Bo
Tango::DevShort Sh
Tango::DevLong Lg
Tango::DevFloat Fl
Tango::DevDouble Db
Tango::DevUshort UsS
Tango::DevULong UL
Tango::DevString Str
Tango::DevVarCharArray ChA
Tango::DevVarShortArray ShA
Tango::DevVarLongArray LgA
Tango::DevVarFloatArray F1A
Tango::DevVarDoubleArray DbA
Tango::DevVarUShortArray USA
Tango::DevVarULongArray ULA
Tango::DevVarStringArray StrA
Tango::DevVarLongStringArray LSA
Tango::DevVarDoubleStringArray DSA
Tango::DevState Sta

For instance, a pointer to a method which takes a Tango::DevVarStringArray as input parame-
ter must be statically casted to a Tango::CmdMethPtr StrA, a pointer to a method which takes a
Tango::DevLong data as input parameter must be statically casted to a Tango::CmdMethPtr Lg.

The Tango::xxx CmdMethPtr is a pointer to a method of the Devicelmpl class which
returns data of one of the Tango type and has no input parameter. xxx must be set according to
the method return data type following the same rules than those described in the previous table.
For instance, a pointer to a method which returns a Tango::DevDouble data must be statically
casted to a Tango::Db_ CmdMethPtr.

The Tango::xxx CmdMethPtr yyy is a pointer to a method of the Devicelmpl class
which returns data of one of the Tango type and has one input parameter of one of the Tango
data type. xxx and yyy must be set according to the method return data type and parameter
type following the same rules than those described in the previous table. For instance, a pointer to a
method which returns a Tango::DevDouble data and which takes a Tango::DevVarLongStringArray
must be statically casted to a Tango::Db_ CmdMethPtr LSA.

All those type are defined in the tango const.h file.

A.6.3 Tango device state code

The Tango::DevState type is a C++ enumeration starting at 0. The code associated with each
state is defined in the following table.

A.6. C++ SPECIFIC 125

| State name | Value |
Tango::ON 0
Tango::OFF 1
Tango::CLOSE 2
Tango::OPEN 3
Tango::INSERT 4
Tango:EXTRACT 5
Tango::MOVING 6
Tango::STANDBY 7
Tango::FAULT 8
Tango::INIT 9
Tango:RUNNING 10
Tango::ALARM 11
Tango::DISABLE 12
Tango:UNKNOWN 13

A strings array called Tango::DevStateNName can be used to get the device state as a string.
Use the Tango device state code as index into the array to get the correct string.

A.6.4 Tango data type

A “define” has been created for each Tango data type. This is summarised in the following table

| Type name | Type code | Value |
Tango::DevBoolean Tango:DEV_BOOLEAN 1
Tango::DevShort Tango:DEV _SHORT 2
Tango::DevLong Tango:DEV_LONG 3
Tango::DevFloat Tango::DEV _FLOAT 4
Tango::DevDouble Tango:DEV_DOUBLE 5
Tango::DevUShort Tango::DEV_USHORT 6
Tango::DevULong Tango:DEV_ULONG 7
Tango::DevString Tango::DEV _STRING 8
Tango::DevVarCharArray Tango:DEVVAR CHARARRAY 9
Tango::DevVarShortArray Tango:DEVVAR _SHORTARRAY 10
Tango::DevVarLongArray Tango:DEVVAR LONGARRAY 11
Tango::DevVarFloatArray Tango:DEVVAR FLOATARRAY 12
Tango::DevVarDoubleArray Tango:DEVVAR DOUBLEARRAY 13
Tango::DevVarUShortArray Tango:DEVVAR_USHORTARRAY 14
Tango::DevVarULongArray Tango:DEVVAR ULONGARRAY 15
Tango::DevVarStringArray Tango:DEVVAR_STRINGARRAY 16
Tango::DevVarLongStringArray Tango:DEVVAR LONGSTRINGARRAY 17
Tango::DevVarDoubleStringArray | Tango::DEVVAR,_DOUBLESTRINGARRAY 18
Tango::DevState Tango:DEV_STATE 19

For command which do not take input parameter, the type codeTango::DEV_VOID (value =
0) has been defined.

A strings array called Tango::CmdArgTypeName can be used to get the data type as a
string. Use the Tango data type code as index into the array to get the correct string.

126 APPENDIX A. REFERENCE PART

A.7 Java specific

A.7.1 Packages

All the Tango core classes are bundled in the a Java package called fr.esrf.TangoDs. All the
classes generated by the IDL compiler are bundled in a Java package called fr.esrf.Tango. All
the CORBA related classes are stored in a package called org.omg.CORBA. The two package
Tango and TangoDs are stored in the same jar file called Tango.jar. The org.omg.CORBA package
is stored in a file called OB.jar.

Bibliography

[1]
2]

3]
4]
[5]
[6]
[7]
[8]

19]
[10]

[11]
[12]
[13]

OMG home page - http://www.omg.org

“Advanced CORBA programming with C++” by M.Henning and S.Vinosky (Addison-Wesley
1999)

TANGO home page - http://www.esrf.fr /tango/index.html

MySQL home page - http://www.mysql.com

“MySQL and mSQL” by Randy Jay Yarger, George Reese and Tim King (O’Reilly 1999)
TANGO classes on-line documentation - http://www.esrf.fr/tango/tango_ classes/index.html
“C++ programming language” third edition by Stroustrup (Addison-Wesley)

“Design Patterns” by Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides (Addison-
Wesley 1995)

OOC home page - http://www.ooc.com

The Common Object Request Broker: Architecture and Specification Revision 2.3 available
from OMG home page - http://www.omg.org

Java Pro - June 1999 : Plugging memory leak by Tony Leung
CVS WEB page - http://www.cyclic.com

POGO home page - http://www.esrf.fr/tango/tango_doc/pogo_doc/index.html

127

Index

-v, 62

administration, 25, 38

ALARM, 37

alarm, 32, 37

alarm(), 112

alias, 24

always-executed-hook, 30, 34, 36, 79, 84, 90

any, 48-50, 57

Attribute, 29, 32, 83

attribute, 11, 15, 16, 19, 21, 23-26, 29, 31-33,
38, 59, 71, 74, 82, 88

attribute-factory, 31, 35, 68, 71, 74

black-box, 24, 26, 29, 119, 120

class-factory, 39, 40, 66
CLASSPATH, 108
CmdArgTypeName, 125

Command, 27, 29, 30, 35, 50, 75, 76
command, 24, 25, 29-31, 36, 69, 75, 115
command-factory, 31, 35, 40, 68, 114
command-handler, 25, 32, 36, 75
command-inout, 25, 29, 36
command-inout-async, 25, 29
command-list-query, 26
command-query, 26

compiling, 105

console, 93

CORBA, 10, 23, 29, 36, 39, 118, 120
cout, 62, 94
create-DevVarLongArray, 56
create-DevVarStringArray, 57

CVS§, 91

database, 24, 26
DbClass, 32
DbDevice, 30

debug, 62
description, 25, 119
dev-state, 34, 79, 84
dev-status, 34, 79, 84
DevError, 57
DevFailed, 57
DevFloat, 17
DevGetTraceLevel, 39, 63, 121, 122

128

DevGetTraceOutput, 39, 63, 121, 122
device-factory, 31, 35, 40, 68, 70, 73
DeviceClass, 27, 31, 34, 35, 68, 69, 72, 75,
112
DeviceImpl, 27, 29, 33, 70, 81, 86, 112
DevKill, 39, 121, 122
DevQueryClass, 39, 121
DevQueryDevice, 39, 121, 122
DevRestart, 39, 121
DevRestartServer, 39, 121
DevSetTraceLevel, 39, 63, 121, 122
DevSetTraceOutput, 39, 63, 121, 122
DevState, 30, 34, 35, 37, 42, 61, 79, 120
DevStateName, 125
DevStatus, 30, 34, 35, 37, 61, 79, 120
DevString, 18
DevVarDoubleStringArray, 19
DevVarLongArray, 17
DevVarStringArray, 18
documentation, 31, 120
DServer, 38, 40, 121
dvalue, 45

error, 57

ESRF, 9, 10

event, 101, 102
Except, 57, 58, 66
exception, 57, 58
executable, 38, 100
execute, 29-31, 35, 36, 75, 76, 78
exit, 113
ExitInstance, 95, 97
export-device, 70, 74
extract, 31, 50, 76

gee, 105

gdb, 105
get-attribute-config, 25
get-device-by-name, 118
graphical, 93, 96

HP-UX, 112
IDL, 23, 41

info, 26
inherit, 114, 115

INDEX

inheritance, 29, 30, 35, 59, 69, 115
init, 40, 66—-69

init-device, 30, 34, 79, 81, 87
InitInstance, 95

insert, 31, 50, 54, 76

instance, 38, 68

IOR, 26

is-allowed, 25, 29-31, 35, 36, 75, 77, 87

JTC, 105

length, 44, 45
linking, 105, 107
Linux, 105, 111
local, 118
logger, 101
lvalue, 45

main, 64, 65

memory, 12-15, 49, 54-56
MFC, 95, 97, 102, 108
MultiAttribute, 29, 32, 82
MySQL, 26

name, 24, 25, 29, 30
namespace, 41, 43, 64, 67
naming, 27

NTService, 100, 102

OMG, 23

operation, 23, 24, 30
ORB, 23

ORBacus, 105

package, 41, 64, 72, 77, 86, 108, 110, 126
pattern, 27, 29, 114

ping, 26

Pogo, 11

print-exception, 57, 66

println, 63

prjadd, 91

prjcreate, 91

prjdiff, 91

prjin, 91

prjout, 91

prjremove, 91

properties, 24, 26, 30, 32, 84, 89

read-attr, 17, 21, 30, 38, 82, 88
read-attr-hardware, 16, 21, 30, 38, 82, 88
read-attributes, 16, 17, 21, 25, 30, 38
register-signal, 112

resource, 95, 99

RTTI, 107

129

sequence, 42, 44, 45, 49, 55, 56
server, 24, 26, 38, 113, 118
server-init, 39, 65, 93, 94, 97, 99
server-run, 39, 40, 65

service, 99, 102

set-in-type-desc, 75, 77
set-main-window-text, 94
set-out-type-desc, 75, 77
set-server-version, 95

signal, 30, 32, 111-113
signal-handler, 112, 114
singleton, 27, 34, 35, 39, 69, 72
Solaris, 112

start, 99, 100, 102

state, 25, 29, 30, 37, 61, 119, 124
status, 25, 29, 30, 37, 119
string-alloc, 43

string-dup, 14, 15, 17, 43, 49, 56
string-free, 43, 56

svalue, 45

TACO, 10

TANGO-HOST, 108, 110

tango.h, 122

Tango::ConstDevString, 55

Tango::DevFloat, 11

Tango::DevState, 42, 46

Tango::DevString, 13, 43, 54

Tango::DevVarDoubleStringArray, 14, 42, 45,
57

Tango::DevVarLongArray, 12, 44, 55

Tango::DevVarLongStringArray, 42, 45, 57

Tango::DevVarStringArray, 13, 45, 56

TangoConst, 72, 73, 77, 86

TangoVers, 110

TDSOM, 23, 24

template, 29, 30, 59, 69

TemplCommand, 29, 30, 123

TemplCommandIn, 29, 31, 123

TemplCommandInOut, 29, 31, 70, 73, 81, 87,
123

TemplCommandOut, 29, 31, 123

thread, 105, 111

throw-exception, 57, 58

unregister-signal, 112
URL, 31
Util, 39, 65, 66, 93, 95, 99

verbose, 62, 94
WAttribute, 29, 33, 38, 82

WIN32, 107
Win32, 98, 108

130 INDEX

Windows, 93, 107

WinMain, 98, 99

writable, 33

write-attr-hardware, 16, 21, 38, 82
write-attributes, 25, 30, 38

