
Tango Training

04/28/10 1

Tango Training

Tango Training

� Introduction (1)

� Device and device server (2)

� Writing device server and client (the basic) (3 – 5)

� Events (6)

� Device server level 2 (7)

04/28/10 2

� Device server level 2 (7)

� Advanced features (8)

� GUIs (9)

� Archiving system (10)

� Miscellaneous (11)

Tango Training:
Part 1 : Introduction

� What isTango?

� Collaboration

04/28/10 3

� Collaboration

� Languages/OS/compilers

� CORBA

What is Tango?

�A CORBA framework for doing controls
– A toolbox to implement a control system
– A specialization of CORBA adapted to Control

04/28/10 4

– Hide the complexity of Corba to the programmer
– Adds specific contol system features

CORBA

TANGO

Control System

What is Tango?

� A software bus for distributed objects

Archiving
TANGO ATK
Java

Qtango
C++

Scan
Service

Java, C++,Python Linux, Windows, Solaris

04/28/10 5

DevDev Dev Dev DevDev

Archiving

TANGO Software Bus

OPC

Dev

Java C++Service

Linux, Windows, Solaris Labview RT

What is Tango?

� Provides a unified interface to all equipments,
hiding how they are connected to a computer
(serial line, USB, sockets….)

� Hide the network

04/28/10 6

� Hide the network

� Location transparency

� Tango is one of the Control System available
today but other exist (EPICS…)

The Tango Collaboration

� Tango collaboration history
– Started in 2000 at ESRF

– In 2002, Soleil joins ESRF to develop Tango

– End 2003, Elettra joins the club

– End 2004, Alba also joins

04/28/10 7

– End 2004, Alba also joins

– 2006: Hasilab, GKSS will use Tango for Petra 3
beamlines

– 2009: MAX-lab will use it for Max 4

– 2009: LMJ uses it for target diagnostics

– 2010: FRM II moves from Taco to Tango

The Tango Collaboration

� How it works:
– Two collaboration meetings per year
– A mailing list (tango@esrf.fr)
– One Tango coordinator per site

04/28/10 8

– One Tango coordinator per site
– WEB site to download code, get documentation,

search the mailing list history, read collaboration
meeting minutes…

http://www.tango-controls.org
– Collaborative development using SourceForge

Language/OS/compilers

� Tango is now (June 2010) at release 7.1
– The training is based on the features of this release.

� Languages/Commercial tools

C++ Java Python Matlab LabView IgorPro

04/28/10 9

C++ Java Python Matlab LabView IgorPro

Client OK OK OK OK OK OK

Server OK OK *** OK

Language/OS/Compilers

�Linux (32 / 64 bits)
– Redhat E4.0 / E5.0, Ubuntu 9.04 and 9.10 (Suse

at Alba)
– gcc

�Solaris

04/28/10 10

�Solaris
– Solaris 9 + CC
– Solaris 9 + gcc

�Windows
– Windows XP / Vista with VC8 / VC9

CORBA

� Common Object Request Broker Architecture
– Promoted by OMG
– It’s just paper, not software

� CORBA defines the ORB: a way to call an
object “method” wherever the object is

04/28/10 11

object “method” wherever the object is
– In the same process
– In another process
– In a process running somewhere on the network

� CORBA also defines services available for all
objects (event, naming, notification)

CORBA

� CORBA allows mixing languages: a client is
not necessarily written in the same language
as server

� CORBA uses an Interface Definition
Language (IDL)

04/28/10 12

Language (IDL)
� CORBA defines bindings between IDL and

computing languages (C++, Java, Python,
Ada….)

� It uses IOR (Interoperable Object Reference)
to locate an object

CORBA
� IDL for a remote controlled car

interface remote_car
{
void go_forward(void);
void go_backward(void);
void stop(void);

04/28/10 13

void stop(void);
void turn(float angle);
};

CORBA

IDL file

IDL to C++
compiler

IDL to Java
compiler

C++ compiler Java compiler

Main with
Object proxy
Creation

+
User code

Main with
Object creation

+
Object
implementation

Client Server

GIOP - IIOP

IOR

CORBA

� Many CORBA ORB and services available
� Tango uses

– omniORB for C++ ORB

04/28/10 15

(http://omniorb.sourceforge.net)
– JacORB for Java ORB (http://www.jacorb.org)
– omniNotify for CORBA notification service

(http://omninotify.sourceforge.net)
– Boost python for PyTango (1.41)

Tango Training:
Part 2 : Device and

Device Server

� The Tango device

04/28/10 16

� The Tango device

� The Tango device server

� A minimum Tango
System

The Tango Device

� The fundamental brick of Tango is the device!
� Everything which needs to be controlled is a

“device” from a very simple equipment to a
very sophisticated one

04/28/10 17

very sophisticated one
� Every device has a three field name

“domain/family/member”
– sr/v-ip/c18-1, sr/v-ip/c18-2
– sr/d-ct/1
– id10/motor/10

Some device(s)
One deviceOne device

04/28/10 18One device

A sophisticated device (RF cavity)

another
device

04/28/10 19

device

The Tango Class

� Every device belongs to a Tango class (not a
computing language class)

� Every device inherits from the same root
class (DeviceImpl class)

04/28/10 20

class (DeviceImpl class)
� A Tango class implements the necessary

features to control one kind of equipment
– Example : The Agilent 4395a spectrum analyzer

controlled by its GPIB interface

The Tango Device Server

� A Tango device server is the process where
the Tango class(es) are running.

Tango device class A

A Tango device server

04/28/10 21

Tango device class A

Device
sr/v-ip/1

Device
sr/v-ip/2

Tango device class B

Device
id4/mot/1

Device
id4/mot/3

Device
id4/mot/2

“ps” command shows one device server

The Tango Device Server

� Tango uses a database to configure a device
server process

� Device number and names for a Tango class
are defined within the database not in the
code .

04/28/10 22

code .
� Which Tango class(es) are part of a device

server process is defined in the database but
also in the code (training part 6)

The Tango Device Server

� Each device server is defined by the couple
“executable name / instance name”

One vacuum pump

sr/v-ip/c9-1 to
sr/v-ip/c9-5

sr/v-ip/c8-1 to sr/v-ip/c8-5

04/28/10 23

VP-DSVP-DS

Crate
X

VP-DSVP-DS

Crate
X+1

sr/v-ip/c9-5

sr/v-ip/c10-1 to
sr/v-ip/c10-5

sr/v-ip/c11
sr/v-ip/c11

How is it possible to define that device
sr/v-ip/c9-3 belongs to the second VP-DS
running on Crate X ?
Start each device server with an
INSTANCE NAME

The Tango Device Server

� During its startup sequence, a Tango device
server asks the database which devices it has
to create and to manage (number and
names)

� Device servers are started like

04/28/10 24

� Device servers are started like
�VP-DS c8
�VP-DS c10

DS exec name Inst name Class name Device name

VP-DS c8 RibberPump sr/v-ip/c8-1

VP-DS c8 RibberPump sr/v-ip/c8-2

VP-DS c8 RibberPump sr/v-ip/c8-3

A minimum Tango System

� To run a Tango control system, you need
– A running MySQL database
– The Tango database server

• It is a C++ Tango device server with one device

� To start the database server on a fixed port

04/28/10 25

� To start the database server on a fixed port
� The environment variable TANGO_HOST is

used by client/server to know
– On which host the database server is running
– On which port it is listening

A minimum Tango System

DataBaseds 2 –ORBendPoint giop:tcp:host:10000

TANGO_HOST=host:port (Ex : TANGO_HOST=orion:10000)

04/28/10 26

Database
server

Tango
client

Device
server

Send device(s) IORGet device(s) IOR

CORBA requests

Execute cmd/read-write attribute

Tango Training:
Part 3 : Writing a

device server

� Tango device
command/attributes

04/28/10 27

command/attributes
� Coding a Tango

class
� Errors
� Properties

Tango Device

� Each Tango device is a CORBA object
� Each Tango device supports the same

network interface
� What do we have in this interface ?

04/28/10 28

� What do we have in this interface ?

Command/Attribute

� On the network a Tango device mainly has
– Command (s): Used to implement “action” on a

device (switching ON a power supply)
– Attribute (s): Used for physical values (a motor

position)

04/28/10 29

� Clients ask Tango devices to execute a
command or read/write one of its attributes

� A Tango device also has a state and a
status which are available using command(s)
or as attribute(s)

Tango Device Command

� A command may have one input and one
output argument.

� A limited set of argument data types are
supported

04/28/10 30

supported
– Boolean, short, long, long64, float, double, string,

unsigned short, unsigned long, unsigned long64,
array of these, 2 exotic types and State data type

Tango Device Attribute

� Self describing data via a configuration

� Thirteen data types supported:
– Boolean, unsigned char, short, unsigned short, long, long64,

unsigned long, unsigned long64, float, double, string, state
and DevEncoded data type

� Three accessibility types

04/28/10 31

� Three accessibility types
– Read, write, read-write

� Three data formats
– Scalar (one value), spectrum (an array of one dimension),

image (an array of 2 dimensions)

� Tango adds 2 attributes which are state and status

Tango Device Attribute

� When you read an attribute you receive:
– The attribute data (luckily…)
– An attribute quality factor

• ATTR_VALID, ATTR_INVALID, ATTR_CHANGING,
ATTR_ALARM, ATTR_WARNING

– The date when the attribute was read (number of seconds

04/28/10 32

– The date when the attribute was read (number of seconds
and usec since EPOCH)

– Its name

– Its dimension, data type and data format

� When you write an attribute, you send
– The new attribute data
– The attribute name

Device Attribute Configuration

� Attribute configuration defined by its
properties
– Five type of properties

• Hard-coded
• Modifiable properties

04/28/10 33

– GUI parameters
– Max parameters
– Alarm parameters
– Event parameters

� A separate network call allows clients to get
attribute configuration (get_attribute_config)

Device Attribute Configuration

� The hard coded attribute properties (8)
– name
– data_type
– data_format
– writable

04/28/10 34

– writable
– max_dim_x
– max_dim_y
– display level
– (writable_attr_name)

Device Attribute Configuration

� The GUI attribute properties (6)
– Description
– Label
– Unit
– Standard_unit

04/28/10 35

– Standard_unit
– Display_unit
– Format (C++ or printf)

� The Maximum attribute properties (used only
for writable attribute) (2)
– min_value
– max_value

Device Attribute Configuration

� The alarm attribute properties (6)
– min_alarm, max_alarm
– min_warning, max_warning
– delta_t, delta_val

� The event attribute properties (6)

04/28/10 36

� The event attribute properties (6)
– period (for periodic event)
– rel_change, abs_change (for change event)
– period, rel_change, abs_change (for archive

event)

Tango Device State

� A limited set of 14 device states is available.
– ON, OFF, CLOSE, OPEN, INSERT, EXTRACT,

MOVING, STANDBY, FAULT, INIT, RUNNING,
ALARM, DISABLE and UNKNOWN

04/28/10 37

ALARM, DISABLE and UNKNOWN

� All defined within an enumeration.

Writing a Tango Device Class

� Writing Tango device class need some glue code.
We are using a code generator with a GUI called
POGO : Program Obviously used to Generate
Objects

� Following some simple rules, it’s possible to use it
during all the device class development cycle (not

04/28/10 38

during all the device class development cycle (not
only for the first generation)

� POGO generates
– C++, Python and Java Tango device class glue code
– Makefile (C++)

– Basic Tango device class documentation (HTML)

A Tango Device Class (example)

� A ski lift class
– 3 states

• ON, OFF, FAULT (OFF at startup)

– 3 commands
Name In Out Allowed

04/28/10 39

– 3 attributes

Reset Void Void If FAULT

On Void Void If OFF

Off Void Void Always

Name type format Writable

Speed double scalar Read/Write

Wind_speed double scalar Read

Seats_pos long spectrum Read

Exercise 1
� Generate a MaxLabPowerSupply class with Pogo

– 3 states:
• ON, OFF, FAULT , ALARM
• OFF at startup

– 4 commands:
– On to switch device ON

– allowed when state is OFF
– Off to switch device OFF

– allowed only when state is ON or ALARM

04/28/10 40

– allowed only when state is ON or ALARM
– Reset to reset the device in case of a FAULT

– allowed only when state is FAULT
– SendCmd to send low-level command. Expert only. Input arg =

DEV_STRING, output arg = DEVVAR_LONGSTRINGARRAY
– Allowed only when OFF

– 3 attributes:
• Current : read/write – scalar – double - memorized
• Voltage : read/write – scalar - double
• CurrentSetPoint : read – scalar – double

� Generate the documentation

Python Binding

� Based on the C++ API and boost for the C++
to Python link (http://www.boost.org/)

04/28/10 41

Python

Boost library

Tango python binding library

Tango C++ libraries

Network

libboost_python.so

_PyTango.so

libtango.so and liblog4tango.so

Python Binding

� Module name = PyTango and its actual
release is 7.1.1 (PyTango.Release.version)

� To use it, you need to have:
• In your LD_LIBRARY_PATH

04/28/10 42

• In your LD_LIBRARY_PATH
•The boost release 1.41 (or more) library

•The Tango and ORB libraries

• In your PYTHONPATH
•The PyTango python package

Coding a Tango Device Class

� Four things to code
– Device creation
– Implementing commands
– Reading attributes
– Writing attributes

04/28/10 43

– Writing attributes

Coding a Tango Class

� For the SkiLift class, Pogo has created 2 files
– SkiLift.py
– TangoClassID.txt

� Only SkiLift.py has to be modified

04/28/10 44

Coding a Tango Class
� Which methods can I use within a Tango class?

– SkiLift class inherits from a Tango class called
Device_<x>Impl

• All the methods from Device_<x>Impl class which are wrapped
to Python

– Some methods received a Attribute or WAttribute object
• All the methods of these two classes wrapped to Python

04/28/10 45

• All the methods of these two classes wrapped to Python

� Doc available at http://www.tango-controls.org

– Documents/Tango Kernel/PyTango for Python
classes

– Documents/Tango Kernel/Tango device server
classes for Cpp classes

Creating the Device (constructor)

� A init_device() method to construct the device
– SkiLift.init_device()

� A delete_device() to destroy the device
– SkiLift.delete_device()

04/28/10 46

– SkiLift.delete_device()

� All resources acquired in init_device() must
be returned in delete_device()

Creating the Device (constructor)

� The init_device() method
– Init state and status
– Init (create) local data

#---

04/28/10 47

Device initialization
#---

def init_device(self):
print "In ", self.get_name(),

"::init_device()"
self.set_state(PyTango.DevState.OFF)

self.get_device_properties(self.get_device_c

Creating the Device

� The delete_device() method
– Delete memory/resources allocated in init_device

#--
Device destructor
#--

def delete_device(self):
print "[Device delete_device method] for device",self.get_name()

04/28/10 48

print "[Device delete_device method] for device",self.get_name()

Implementing a Command

� One method always_executed_hook() for all
commands
– SkiLift.always_executed_hook()

� If state management is needed, one
is_xxx_allowed() method

04/28/10 49

is_xxx_allowed() method
– bool SkiLift.is_reset_allowed()

� One method per command
– SkiLift.reset()

SkiLift
(CORBA Obj.)

SkiLiftClass
(Device Class)

SkiLift
(Device
Impl.)

ResetClass
(Command)

command_inout

Implementing a Command

� Reset command sequencing

50

Impl.)

always_executed_hook

is_allowed

command_inout
CORBA::Any command_handler

CORBA::Any

execute
CORBA::Any reset

Void

Void
CORBA::Any

CORBA::Any

CORBA::Any

is _Reset _allowed

Implementing a Command

� SkiLift.is_Reset_allowed method coding

#---- Reset command State Machine -----------------
def is_Reset_allowed(self):

if self.get_state() in [PyTango.DevState.ON,

04/28/10 51

if self.get_state() in [PyTango.DevState.ON,
PyTango.DevState.OFF]:

End of Generated Code
Re-Start of Generated Code

return False
return True

Implementing a Command

� SkiLift.reset command coding
#--
Reset command:
#
Description: Reset the ski lift device

#--

def Reset(self):

04/28/10 52

def Reset(self):
print "In ", self.get_name(), "::Reset()"
Add your own code here

hardware.reset()
self.set_state(PyTango.DevState.OFF)
self.set_state('The ski lift is OFF')

Implementing a Command

Name Input (with self) return mandatory

init_device None None Yes

delete_device None None No

always_executed_hook None None No

� General methods

04/28/10 53

always_executed_hook None None No

� Cmd methods

Name Input (with self) return mandatory

is_<Cmd>_allowed None bool No

<Cmd_name> Depends on cmd
arg type

Depends on
cmd arg type

Yes

Command data type (PyTango)

Tango data type Python type

DEV_VOID No data

DEV_BOOLEAN bool

DEV_SHORT int

DEV_LONG int

DEV_LONG64 long or int (32/64 bits computer)

04/28/10 54

DEV_LONG64 long or int (32/64 bits computer)

DEV_FLOAT float

DEV_DOUBLE float

DEV_USHORT int

DEV_ULONG int

DEV_ULONG64 long or int (32/64 bits computer)

DEV_STRING str

Command data type (PyTango)
Tango data type Python type

DEVVAR_CHARARRAY sequence<int> or numpy array (numpy.uint8)

DEVVAR_SHORTARRAY sequence<int>or numpy array (numpy.int16)

DEVVAR_LONGARRAY sequence<int>or numpy array (numpy.int32)

DEVVAR_LONG64ARRAY sequence<int>or sequence<long> or numpy array
(numpy.int64)

DEVVAR_FLOATARRAY sequence<float>or numpy array (numpy.float32)

DEVVAR_DOUBLEARRAY sequence<float>or numpy array (numpy.float64)

04/28/10 55

DEVVAR_DOUBLEARRAY sequence<float>or numpy array (numpy.float64)

DEVVAR_USHORTARRAY sequence<int>or numpy array (numpy.uint16)

DEVVAR_ULONGARRAY sequence<int>or numpy array (numpy.uint32)

DEVVAR_ULONG64ARRAY sequence<int>or sequence<long> or numpy array
(numpy.uint64)

DEVVAR_STRINGARRAY sequence<str>

DEVVAR_LONGSTRINGARARAY sequence with ((sequence<int> or numpy array
(numpy.int32)) + sequence<str>)

DEVVAR_DOUBLESTRINGARRAY Sequence with ((sequence<float> or numpy array
(numpy.float32)) + sequence<str>)

Exercise 2

� Code the 4 commands of the MaxLabPS:
• Cmd On. The PS automatically switches to FAULT

after 10 seconds

• Cmd Off

• Cmd Reset

04/28/10 56

• Cmd Reset

• Cmd SendCmd

•Print the received command string

•Return 3 numbers and 2 strings

Back to the init_device method

#--
Device initialization
#--
def init_device(self):

print "In ", self.get_name(), "::init_device()"
self.set_state(PyTango.DevState.OFF)

04/28/10 57

self.set_state(PyTango.DevState.OFF)
self.get_device_properties(self.get_device_class())

self.set_status('The ski lift is OFF')
self.hardware_readings = []

Reading Attribute(s)

� One method to read hardware
– SkiLift.read_attr_hardware(data)

� If state management is needed, one
is_xxx_allowed() method

04/28/10 58

is_xxx_allowed() method
– bool SkiLift.is_Speed_allowed(req_type)

� One method per attribute
– SkiLift.read_Speed(Attribute)

Reading Attribute(s)

� Reading attribute(s) sequence

read_attribute s(Speed)

SkiLift
(CORBA Obj.)

SkiLift
(Device
Impl.)

always_executed_hook

04/28/10 59

always_executed_hook

read_attr_hardware (Attr1, Attr2)

is_Speed_allowed (Attr1)

read_Speed (Attr)

Reading Attribute(s)

� Most of the attribute Tango feature are implemented
in a Tango kernel class called “Attribute”. The user
only manage attribute data

� Reading sequence
– read_attr_hardware

04/28/10 60

– read_attr_hardware
• 1 call even if several attributes must be read

• Rule: Reading the hardware only once

• Update internal variable

– is_<attribute>_allowed
• 1 call per attribute

• Rule: Enable/disable attribute reading

Reading Attribute(s)

� Reading sequence
– read_<attribute>

• 1 call per attribute to read
• Rule: Affect a value to the attribute
• Associate the attribute and a variable which represents it

04/28/10 61

• Associate the attribute and a variable which represents it
with :

– attr.set_value(data,…)

Reading Attribute(s)

� read_attr_hardware() method

#-- ----------------

Read Attribute Hardware
#---
def read_attr_hardware(self,data):

print "In ", self.get_name(), "::read_attr_hardware()"

04/28/10 62

print "In ", self.get_name(), "::read_attr_hardware()"

self.hardware_readings = hardware.read()

Reading Attribute(s)

� read_Speed() method

#--
Read Speed attribute
#--
def read_Speed(self, attr):

print "In ", self.get_name(), "::read_Speed()"

04/28/10 63

print "In ", self.get_name(), "::read_Speed()"

Add your own code here
attr.set_value(self.hardware_readings[0])

Writing Attribute(s)

� If state management is needed, one
is_xxx_allowed() method
– bool SkiLift.is_Speed_allowed(req_type)

� One method per attribute

04/28/10 64

� One method per attribute
– SkiLift.write_Speed(Wattribute)

� Writing attribute(s) sequence

write_attribute(Speed)

SkiLift
(CORBA Obj.)

SkiLift
(Device
Impl.)

always_executed_hook

Writing Attribute(s)

04/28/10 65

always_executed_hook

is_Speed_allowed (Attr)

write_Speed (Attr)

Writing Attribute(s)

� Writing sequence
– is_<attribute>_allowed

• 1 call per attribute
• Rule: Enable/disable attribute writing

– write_<attribute>

04/28/10 66

– write_<attribute>
• 1 call per attribute to write
• Rule: Get the value to be written and set the hardware
• Get the value to be written with :

– attr.get_write_value()

Writing Attribute(s)

� write_Speed() method

def write_Speed(self, attr):
print "In ", self.get_name(), "::write_Speed()"

data=[]
attr.get_write_value(data)

04/28/10 67

data = attr.get_write_value()
hardware.write_speed(data)

Implementing attribute

Name Input (with self) return mandatory

always_executed_hook None None No

Read_attr_hardware List<int> None No

� General methods

04/28/10 68

� Attribute methods

Name Input (with self) return mandatory

is_<Attr>_allowed req_type (int) bool No

write_<Attr> WAttribute None Yes

read_<Attr> Attribute None Yes

Scalar Attribute data type (PyTango)

Tango data type Python type

DEV_BOOLEAN bool

DEV_UCHAR int

DEV_SHORT int

DEV_LONG int

DEV_LONG64 long or int (32/64 bits computer)

04/28/10 69

DEV_LONG64 long or int (32/64 bits computer)

DEV_FLOAT float

DEV_DOUBLE float

DEV_USHORT int

DEV_ULONG int

DEV_ULONG64 long or int (32/64 bits computer)

DEV_STRING str

Spectrum/Image data type (PyTango)

Tango data type Python type

DEV_BOOLEAN sequence<bool> or numpy.ndarray (numpy.xxx)

DEV_UCHAR sequence<int> or numpy.ndarray (numpy.uint8)

DEV_SHORT sequence<int> or numpy.ndarray (numpy.int16)

DEV_LONG sequence<int> or numpy.ndarray (numpy.int32)

DEV_LONG64 sequence<long or int> or numpy.ndarray (numpy.int64)

04/28/10 70

DEV_LONG64 sequence<long or int> or numpy.ndarray (numpy.int64)

DEV_FLOAT sequence<float> or numpy.ndarray (numpy.float32)

DEV_DOUBLE sequence<float> or numpy.ndarray (numpy.float64)

DEV_USHORT sequence<int> or numpy.ndarray (numpy.uint16)

DEV_ULONG sequence<int> or numpy.ndarray (numpy.uint32)

DEV_ULONG64 sequence<long or int> or numpy.ndarray (numpy.uint64)

DEV_STRING sequence<str>

Memorised Attributes

� Only for writable scalar attributes!
� For every modification the attribute set point

is saved in the database
� Memorized attributes initialization options

(supported by Pogo)

04/28/10 71

(supported by Pogo)
– Write hardware at init.

Exercise 3 (Arg !!…)

Add attributes to the MaxLabPowerSupply class
– Voltage (Double – Scalar – R/W): What you read

is what has been written (if state is ON or ALARM,
otherwise 0). 0 at init

– Current (Double – Scalar – R/W - Mem): What

04/28/10 72

– Current (Double – Scalar – R/W - Mem): What
you read is what has been written + random
between 0 and 1 (if state is ON or ALARM,
otherwise 0). Take 100 mS.

– CurrentSetPoint (Double – Scalar - R): The
Current attribute set point

Reporting Errors

� Using exception
– The Tango exception DevFailed is an error stack
– Each element in the stack has 4 members :

• reason (string)
– The exception summary

04/28/10 73

– The exception summary
• desc (string)

– The full error description
• origin (string)

– The method throwing the exception
• Severity (string) (not used)

– Set to WARN, ERR, PANIC

Reporting Errors

� Static methods to help throwing an exception
� Another method to re-throw an exception and

to add one element in the error stack (Often
used in a “except” block)

04/28/10 74

PyTango.Except.throw_exception('SkiLift_NoCable',
'Oups, the cable has fallen down !!',
'SkiLift.init_device()')

PyTango.Except.re_throw_exception(previous_exception,
reason, desc, origin)

PyTango.Except.print_exception(except)

Properties

� Properties are stored within the MySQL
database

� No file – Use Jive to create/update/delete
properties

� You can define properties at

04/28/10 75

� You can define properties at
– Object level
– Class level
– Device level
– Attribute level

Properties

� Property data type
– Simple type

• bool, short, long, float, double, unsigned short, unsigned
long, string

– Array type

04/28/10 76

– Array type
• short, long, float, double, string

� Pogo generates code to retrieve properties
from the database and store them in your
device
– Method MyDev.get_device_property()

Properties

� Algorithm generated by Pogo to simulate
default property values

- /IF/ class property has a default value
- property = class property default value

- /ENDIF/
- /IF/ class property is defined in db

04/28/10 77

- /IF/ class property is defined in db
- property = class property as found in db

- /ENDIF/
- /IF/ device property has a default value

- property = device property default value
- /ENDIF/
- /IF/ device property is defined in db

- property = device property as found in db
- /ENDIF/

Properties

� PyTango creates a class python attribute for
each device property

if self.MyProp is True:

04/28/10 78

if self.MyProp is True:
Do What You Want

Attribute Properties

� Several ways to define them with a priority
schema (from lowest to highest priority) :
– There is a default value hard-coded within the

library

04/28/10 79

– You can define them at class level
– You can define them by code (POGO) at class

level
– If you update them, the new value is taken into

account by the device server and written into the
database. Device level.

Exercise 4

� The SendCmd command returns exception if
input arg != “calibrate”

� The time before the PS switches to Fault is a
device property TimeToFault (default value
10)

04/28/10 80

10)
� The Voltage attribute value at startup is a

device property DefaultVoltage (default
value 123)

Some code executed only once ?

� Yes, it is foreseen
� Each Tango class has a MyDevClass class

(SkiLiftClass) with only one instance.
� Put code to be executed only once in its

04/28/10 81

� Put code to be executed only once in its
constructor

� Put data common to all devices in its data
members

� The instance of MyDevClass is constructed
before any devices

A Tango Device Server Process
� The main part

#==
#
SkiLift class main method
#
#==
if __name__ == '__main__':

try:
py = PyTango.Util(sys.argv)
py.add_TgClass(SkiLiftClass,SkiLift,'SkiLift')

82

py.add_TgClass(SkiLiftClass,SkiLift,'SkiLift')

U = PyTango.Util.instance()
U.server_init()
U.server_run()

except PyTango.DevFailed,e:
print '-------> Received a DevFailed exception:',e

except Exception,e:
print '-------> An unforeseen exception occured....',e

Automatically added
Commands/Attributes

� Three commands are automatically added
– State : In = void Out = DevState

• Return the device state and check for alarms
• Overwritable

– Status : In = void Out = DevString

04/28/10 83

– Status : In = void Out = DevString
• Return the device status
• Overwritable

– Init : In = void Out = void
• Re-initialise the device (delete_device + init_device)

� Two attributes are automatically added
– State and Status

The remaining Network Calls

� ping
– Just ping a device. Is it available on the network?

� command_list_query
– Returns the list of device supported commands

with their descriptions

04/28/10 84

with their descriptions

� command_query
– Return the command description for one specific

command

� info
– Return general info on a device (class, server

host….)

The remaining Network Calls

� get_attribute_config
– Return the attribute configuration for x (or all)

attributes

� set_attribute_config
– Set attribute configuration for x attributes

04/28/10 85

– Set attribute configuration for x attributes

� blackbox
– Return x entries of the device black box
– Each device has a black box (round robin buffer)

where each network call is registered with its date
and the calling host

The remaining Network Calls

� write_read_attribute
– Write then read one attribute in one go

04/28/10 86

The remaining Network Calls

� For completeness
– Five CORBA attributes

• state
• status

04/28/10 87

• status
• name
• description
• adm_name

Tango Training:
Part 4 :

The Client Side

� The PyTango client

04/28/10 88

� The PyTango client
API

� Error management

� Asynchronous call

� Group call

Tango on the Client Side

� A C++, Python and Java API is provided to
simplify developer's life
– Easy connection building between clients and

devices
– Manage re-connection

04/28/10 89

– Manage re-connection
– Hide some IDL call details
– Hide some memory management issues

� These API’s are a set of classes

PyTango Client

� On the client side, each Tango device is an
instance of a DeviceProxy class

� DeviceProxy class
– Hide connection details

04/28/10 90

– Hide connection details
– Hide which IDL release is supported by the device
– Manage re-connection

� The DeviceProxy instance is created from the
device name

PyTango.DeviceProxy dev(“id13/v-pen/12”);

PyTango Client

� The DeviceProxy command_inout() method
sends a command to a device

� The class DeviceData is used for the data
sent/received to/from the command.
DeviceProxy.command_inout(name, cmd_param)

04/28/10 91

dev = PyTango.DeviceProxy(“et/s_lift/1”)

dev.command_inout(‘On’)
dev.on()

print dev.command_inout(‘EchoShort’,10)

print dev.EchoShort(10)

DeviceProxy.command_inout(name, cmd_param)

PyTango Client

� The DeviceProxy read_attribute() method
reads a device attribute (or read_attributes())

� The class DeviceAttribute is used for the data
received from the attribute.

04/28/10 92

DeviceAttribute DeviceProxy.read_attribute(name);

dev = PyTango.DeviceProxy(‘et/s_lift/1’)
da = dev.read_attribute(‘SpecAttr’)
print da.value

print dev[‘SpecAttr’].value

seq_da = dev.read_attributes([‘SpecAttr’,’ImaAttr’])

PyTango Client

� The DeviceProxy write_attribute() method
writes a device attribute (or write_attributes())

DeviceProxy.write_attribute(name,value)

04/28/10 93

dev = PyTango.DeviceProxy(‘et/s_lift/1)
dev.write_attribute(‘SpecAttr’,[2,3])

dev.write_attribute(‘SpecAttr’,numpy.array([6,7]))

dev[‘SpecAttr’] = [3,4]

dev.write_attributes(([‘Speed’,5],[‘SpecAttr’,[2,3]]))

PyTango Client

� The API manages re-connection
– By default, no exception is thrown to the caller

when the automatic re-connection takes place
– Use the

DeviceProxy.set_transparency_reconnection()

04/28/10 94

DeviceProxy.set_transparency_reconnection()
method if you want to receive an the exception

� Don’t forget to catch the PyTango.DevFailed
exception!

PyTango Client

� Many methods available in the DeviceProxy
class
– ping, info, state, status, set_timeout_millis,

get_timeout_millis, attribute_query,

04/28/10 95

get_timeout_millis, attribute_query,
get_attribute_config, set_attribute_config…..

� If you are interested only in attributes, use the
AttributeProxy class

� Look at PyTango doc (Pink site)

Errors on the Client Side

� All the exception thrown by the API are
PyTango.DevFailed exception

� One catch (except) block is enough
� Ten exception classes (inheriting from

04/28/10 96

� Ten exception classes (inheriting from
DevFailed) have been created
– Allow easier error treatment

� These classes do not add any new
information compared to the DevFailed
exception

Errors on the Client Side

� Exception classes :
– ConnectionFailed, CommunicationFailed,

WrongNameSyntax, NonDbDevice, WrongData,
NonSupportedFeature, AsynCall,
AsynReplyNotArrived, EventSystemFailed,

04/28/10 97

AsynReplyNotArrived, EventSystemFailed,
NamedDevFailedList

� Documentation tells you (or should) which
kind of exception could be thrown.

Errors on the Client Side

� A small example

try:
att = PyTango.AttributeProxy(‘et/s_lift/1Pres’)
print att.read()

04/28/10 98

print att.read()
except PyTango.WrongNameSyntax:
print ‘Et couillon, faut 3 / !’
except PyTango.DevFailed,e:
PyTango.Except.print_exception(e)

Exercise 5

� Write a MultiMaxLabPowerSupply Tango
class
� 5 states (ON, OFF, FAULT, ALARM, UNKNOWN)
� 2 commands (On, Off)
� 1 attribute (Currents: Spectrum – DEV_DOUBLE –

04/28/10 99

� 1 attribute (Currents: Spectrum – DEV_DOUBLE –
R/W)

� 1 Device property (ChannelsName: string array –
default = “Not defined”)

� This Tango class is a client of the individual
power supply device (channel)

Exercise 5
� Refuse to start if no channel name defined
� State management:

� If one channel in FAULT -> FAULT
� Idem for OFF and ALARM, otherwise ON
� UNKNOWN in case of exception

� On Allowed only when OFF/ON
� Switches ON all channels

04/28/10

� Switches ON all channels
� Off Allowed only when ON/OFF/ALARM

� Switches OFF all channels
� Currents attribute

� Return individual channels value (as a Numpy array)
� Write individual channels. Exception if wrong inputs number

� Create 3 MaxLabPowerSupply devices and connect them to a
single MultiMaxLabPowerSupply device.

Asynchronous Call

� Asynchronous call :
– The client sends a request to a device and does

not block waiting for the answer.
– The device informs the client process that the

request has ended

� Does not request any changes on the server

04/28/10 101

� Does not request any changes on the server
side

� Supported for
– command_inout
– read_attribute(s)
– write_attribute(s)

Asynchronous call

� Tango supports two models for clients to get
requested answers
– The polling model

• The client decides when it checks for requested answers

– With a non blocking call

04/28/10 102

– With a non blocking call

– With a blocking call

– The callback model
• The request reply triggers a callback method

– When the client requested it with a synchronization
method (Pull model)

– As soon as the reply arrives in a dedicated thread
(Push model)

Group Call

� Provides a single point of control for a Group
of devices

� Group calls are executed asynchronously!
� You create a group of device(s) with the

PyTango.Group class

04/28/10 103

PyTango.Group class
– It’s a hierarchical object (You can have a group in

a group) with a forward or not forward feature

� You execute a command (or R/W attribute)
on the group

Group Call

� Using groups, you can
– Execute one command

• Without argument
• With the same input argument to all group members
• With different input arguments for group members

04/28/10 104

• With different input arguments for group members

– Read one attribute
– Write one attribute

• With same input value for all group members
• With different input value for group members

• Read several attributes

Group Call

� Three classes to get group action result
�PyTango.GroupCmdReplyList

�For command executed on a group

�PyTango.GroupAttrReplyList

04/28/10 105

�PyTango.GroupAttrReplyList
�For attribute(s) read on a group

�PyTango.GroupReplyList
�For attribute written on a group

Tango Training:
Part 5 : More info
on Device Servers

� The Administration

04/28/10 106

� The Administration
Device

� The Logging
System

� The Polling

The Administration Device

� Every device server has an administration device
� Device name

– dserver/<exec name>/<instance name>

� This device supports 27 (30) commands and 0 (2)
attributes

04/28/10 107

attributes
– 8 miscellaneous commands
– 7 commands for the logging system
– 1 command for the event system
– 7 commands for the polling system
– 4 commands to lock/unlock device

The administration device

� Miscallaneous commands
�DevRestart destroy and re-create a device. The

client has to re-connect to the device
�RestartServer to restart a complete device server

04/28/10

�QueryClass to get the list of Tango classes
embedded within the process

�QueryDevice to get the list of available devices
�Kill to kill the process
�State, Status, Init

The Tango Logging System

� Send device server messages to a target
– A file
– The console
– A centralized application called LogViewer

04/28/10 109

Device
server

Console

File(s)
LogViewer

Tango device

The Tango Logging System

� Each Tango device has a logging level
� Each logging request also has a logging level
� Six ordered logging levels are defined

– DEBUG < INFO < WARN < ERROR < FATAL <

04/28/10 110

– DEBUG < INFO < WARN < ERROR < FATAL <
OFF

� Each logging request with a level lower than
the device logging level is ignored

� Device default logging level is WARN

The Tango Logging System

� Five functions to send logging messages
– print like

• self.{fatal, error, warn, info, debug}_stream()

� Usage :

04/28/10 111

self.debug_stream(“Hola amigo, que tal ?”)

self.debug_stream(‘In read_Speed method for device’,self.get_name())

The Tango Logging System

� Logging on a console
– Send messages to the console on which the device server

has been started

� Logging in a file
– Logging message stored in a XML file

04/28/10 112

– Manage 2 files

– Swap files when file size is greater than a pre-defined value
(a property). Rename the old one as “xxx_1”. Default file size
threshold is 2 MBytes

– Default file names: “/tmp/tango/process/instance/device.log”
or “C:\tango\…..” (create directory by hand…)

– Read files with the “LogViewer” application

The Tango Logging System

� Logging with the LogViewer
– Send messages to a Tango device embedded in

the LogViewer application

� LogViewer (Java appl.)
– Graphical application to display, filter and sort

04/28/10 113

– Graphical application to display, filter and sort
logging messages

– Two modes
• Static: Memorize a list of Tango devices for which it will

get/display messages
• Dynamic: The user (with a GUI) chooses devices for

which messages must be displayed

The Tango Logging System

� Seven administration device commands
dedicated to logging
– AddLoggingTarget
– RemoveLoggingTarget
– GetLoggingTarget

04/28/10 114

– GetLoggingTarget
– GetLoggingLevel
– SetLoggingLevel
– StopLogging
– StartLogging

The Tango Logging System

� Logging configuration with Jive
– current_logging_level

• Not memorized

– logging_level
• Memorized in db

04/28/10 115

• Memorized in db

– current_Logging_target
• Not memorized
• console::cout, file::/tmp/toto or device::tmp/log/xxx

– logging_target
• Memorized in db

The Tango Logging System

� Each device server has a “-v” option
– v1 and v2

• Level = INFO and target = console::cout for all DS
devices

– v3 and v4

04/28/10 116

– v3 and v4
• Level = DEBUG and target = console::cout for all DS

devices

– v5
• Like v4 plus library messages (there are many) on target

= console::cout

– Without level is a synonym for –v4

The Polling

� Each Tango device server has a polling
thread pool

� It’s possible to poll attributes and/or
commands (without input parameters)

� The polling result is stored in a polling buffer

04/28/10 117

� The polling result is stored in a polling buffer
(round robin buffer)

� Each device has its own polling buffer
� Polling buffer depth is tunable

– By device (default is 10)
– By command/attribute

The Polling

� By default, there is only one polling thread in
the pool

� You assign polled device to a thread
� Two admin device properties to manage

polling thread pool

04/28/10 118

polling thread pool
� polling_thread_pool_size
� polling_thread_pool_conf

� The Tango admin tool (astor) has a graphical
panel to tune device server polling

The Polling

04/28/10 119

The Polling

� A client is able to read data from
– The real device
– The last record in the polling buffer

– The polling buffer and in case of error from the real device

– The choice is done with the DeviceProxy.set_source()

04/28/10 120

– The choice is done with the DeviceProxy.set_source()
method

� A network call to read the complete polling buffer is
also provided (command_inout_history or
read_attribute_history defined in the Tango IDL)
– Not wrapped to Python…

The Polling

� Seven administration device commands allow
the polling configuration
– AddObjPolling
– RemObjPolling
– UpdObjPolling

04/28/10 121

– UpdObjPolling
– StartPolling
– StopPolling
– PolledDevice
– DevPollStatus

The Polling

� How it starts ?
– At device startup

– For completeness
– Externally triggering mode (C++ DS only)

04/28/10 122

– Externally triggering mode (C++ DS only)
– External polling buffer filling (C++ DS only)

• Get data with the command_inout_history or
read_attribute_history calls

The Polling

� The polling has to be tuned
�Do not try to poll a command with a polling period

of 200 mS if the command needs 250 mS !!!
� If a polling thread is late (for one reason or

another), it discards polling

04/28/10 123

another), it discards polling
� Leave your device available for around 50 % for

external world requests
�For a command needing 250 mS, minimum polling

period around 500 mS

Exercise 6

� Poll the Current attribute of one
MaxLabPowerSupply device
�Play with the source parameter

� Add some Tango logging messages in the
MaxLabPowerSupply Tango class

04/28/10 124

MaxLabPowerSupply Tango class
�Start device server process using –vx option
�Start the LogViewer appli

Tango Training:
Part 6 :
Events

04/28/10 125

Events

� Another way to write applications
– Applications do not poll any more
– The device server informs the applications that

“something” has happened

� Polling done by the device server polling

04/28/10 126

� Polling done by the device server polling
thread(s)

� Uses a CORBA service called “Notification
Service”

� Tango uses omniNotify as Notification
Service

Events

� One Notification service daemon (notifd)
running on each host

� Event propagation
– The event is sent to the notification service

04/28/10 127

– When detected by the polling thread(s)
– On request (push_event() call family)

– The notification service sends the event to all the
registered client(s)

� It is possible to ask the notification service to
filter events

Events
Dev

Server
Dev

Server

Event table in the
Tango database

Name IOR
Event
Channel
factory

Notification service (simplified)

Event channel Event channel

04/28/10 128

Filter
factory

Filter 1 Filter 3

Client 1
per

Client 2
per

Client 3
per/change

Client 4
change

Client 5
change

Filter 4Filter 2
per change

Events
� Only available on attributes!

� Does not requires any changes in the device
server code

� Based on callbacks. The client callback is
executed when an event is received

04/28/10 129

executed when an event is received
• Event data or an error stack in case of an

exception

� 6 types of events
• Periodic, Change, Archive

• Attribute configuration change, Data ready

• User defined

Events

� Periodic event
– Event pushed:

• At event subscription
• On a periodic basis

� Change event
– Event pushed when

04/28/10 130

– Event pushed when
• a change is detected in attribute data
• a change is detected in attribute size (spectrum/image)
• At event subscription
• An exception was received by the polling thread
• the attribute quality factor changes
• When the exception disappears

Events

� Archive event
– A mix of periodic and change events

� Attribute configuration change
– Event pushed when:

• At event subscription

04/28/10 131

• At event subscription
• The attribute configuration is modified with

set_attribute_config()

� User defined event / Data ready event
– Event pushed when the user decides it

Events (configuration)

� Periodic event configuration
– event_period (in mS).

• Default is 1000 mS
• Cannot be faster than the polling period

– Polling period != event period

04/28/10 132

– Polling period != event period
– The event system does not change the attribute

polling period if already defined

Polling
400 mS

Event
(1000)

Client

Events (configuration)

� Change event configuration
– Checked at the polling period
– rel_change and abs_change

• Up to 2 values (positive, negative delta)

04/28/10 133

• Up to 2 values (positive, negative delta)
• If both are set, relative change is checked first
• If none is set -> no change event!

Events (configuration)

� Archive event configuration
– Checked at the polling period
– event_period (in mS).

• Default is 0 mS -> no periodic archive event !

– rel_change and abs_change

04/28/10 134

– rel_change and abs_change
• Up to 2 values (positive, negative delta)
• If both are set, relative change is checked first
• If none is set -> no archive event on change!

Events (configuration)

� Event configuration parameters
(event_period, abs_change, rel_change…)
are part of the attribute configuration
properties

04/28/10 135

properties
� Can be configured with Jive

Events (pushed from the code)

� Possible for change, archive, user and data
ready events

� To push events manually from the code a set
of data type dependent methods can be used:

04/28/10 136

of data type dependent methods can be used:
DeviceImpl.push_xxx_event (attr_name,)
xxx = {change, archive, data_ready, ‘nothing’}

� It is possible to push events from the code
and from the polling thread at the same time

� Attribute configuration with Pogo

Events (pushed from the code)
� To allow a client to subscribe to events of non polled

attributes the server has to declare that events are
pushed from the code

DeviceImpl.set_change_event(attr_name, implemented, detect = true)

DeviceImpl.set_archive_event(attr_name,implemented, detect = true)

04/28/10 137

DeviceImpl.set_archive_event(attr_name,implemented, detect = true)

– implemented=true inidcates that events are pushed manually
from the code

– detect=true triggers the verification of the same event
properties as for events send by the polling thread.

– detect=false, no value checking is done on the pushed
value!

Events (filtering)

� When you subscribe to an event, you may
ask for a filters

� All filters are compared to the last event
value send and not to the actual attribute
value!

� Periodic event filter

04/28/10 138

� Periodic event filter
• Filterable data name : “counter”
• Incremented each time the event is sent
• Ex : “$counter % 2 == 0”

Events (filtering)

� Change event filters are
– “quality” is true when the event was pushed on a

quality change
• “Ex: $quality == 1

– “forced_event” is true when the event was pushed

04/28/10 139

– “forced_event” is true when the event was pushed
due to an exception, an exception change or when
the exception disappears

– “delta_change_rel” and “delta_change_abs”
contain the change detected by server compared
to the last event pushed

• Ex : “$delta_change_abs >= 2”

Events (filtering)

� Archive event filters are
– “counter” as for the periodic event
– “quality” and “forced_event” as for the change

event
– “delta_change_rel” and “delta_change_abs” as for

04/28/10 140

– “delta_change_rel” and “delta_change_abs” as for
the change event

– “delta_event” contains the delta time in ms since
the last archive event was pushed

• Ex: “$delta_event >= 2000”

Events (heartbeat)

� To check that the device server is alive
• A specific “heartbeat event” is sent every 10

seconds to all clients connected on the event
channel

� To inform the server that no more clients are

04/28/10 141

� To inform the server that no more clients are
interested in events
• A re-subscription command is sent by the client

every 200 seconds. The device server stops
sending events as soon as the last subscription
command is older than 600 seconds

Events (heartbeat)

� A dedicated client thread (KeepAliveThread)
wakes up every 10 seconds to check the
server’s 10 seconds heartbeat and to send
the subscription command periodically.

04/28/10 142

the subscription command periodically.

Events (threading)

� On the client side
– As soon as you create a DeviceProxy -> 2 threads (main

thread + omniORB scavenger thread)
– First event subscription adds 3 threads:

– (orb thread, omniORB thread and KeepAliveThread)

– Clients are servers : One more thread per Notification

04/28/10 143

– Clients are servers : One more thread per Notification
service sending events to the client

– thread number: 5 + n (n = Notif service connected (+1 for
linux))

– Warning : Callbacks are not executed by the main thread !

� On the server side
– No changes

Events (client side)

� Event subscription with the
DeviceProxy.subscribe_event() method

� Event un-subscription with the
DeviceProxy.unsubscribe_event() method

04/28/10 144

DeviceProxy.unsubscribe_event() method
� Call-back (idem to asynchronous call)

– Method push_event() to overwrite in your class
– This method receives a pointer to an instance of a

PyTango.EventData class

Events (client side)

import PyTango
import time

class MyCb:
def push_event(self,ev_data):

class EventData:
device (DeviceProxy)
attr_name (string)
event (string)
attr_value (DeviceAttribute)
err (bool)

04/28/10 145

def push_event(self,ev_data):
if ev_data.err is True:

print “Error received in event callback”
else:

if (ev_data.attr_value.get_err_stack() == 0:
print ev_data.attr_value.value

if __name__ == ‘__main__’
cb = MyCb()

dev = PyTango.DeviceProxy(‘et/s_lift/1’)

err (bool)
errors (sequence<DevError>)

Events (client side)

� The event subscription can be stateless (in
case the device server process does not run)

� You can also manage an event queue to
decuple the application from the events

04/28/10

decuple the application from the events
�Defined at event subscription time

�Queue size defined in the
DeviceProxy.subscribe_event() call

� The user calls DeviceProxy.get_events() to get the
events from the queue

Exercise 7

� Test set up
– Add a command which increments by 2 the

Current attribute (IncrCurrent – void –void)

� Start the notification service and register the
service to the Tango database

04/28/10 147

service to the Tango database
– notifd –n
– notifd2db

� Write a client which subscribes to a change
event and sleeps waiting for events

Tango Training: Part 7 : Device
Server Level 2…

� C++ specific features
� Attribute Alarms

05/06/2010 148

� Attribute Alarms
� Several classes in the same

device server
� Threading model
� Abstract classes
� Device servers on Windows

C++ : Creating the Device

� A init_device() method to construct the device
– void SkiLift::init_device()

� A delete_device() to destroy the device
– void SkiLift::delete_device()

05/06/2010 149

– void SkiLift::delete_device()

� All memory allocated in init_device() must be
deleted in delete_device()

C++ : Command Memory
Management

� For string dynamically allocated (Pogo style)
– Memory allocated in the command code and freed

by the Tango layer

Tango::DevString MyDev::dev_string(Tango::DevString argin)

05/06/2010 150

Tango::DevString MyDev::dev_string(Tango::DevString argin)
{

Tango::DevString argout;

cout << “The received string is “ << argin << endl;

string str(“Am I a good Tango dancer?”);
argout = new char[str.size() + 1];
strcpy(argout,str.c_str());

return argout;
}

C++ : Command Memory
Management

� For string statically allocated
– ConstDevString is not a new type, just to allow

type overloading
– Pogo gives you the choice (for free !)

05/06/2010 151

Tango::ConstDevString MyDev::dev_string(Tango::DevString argin)
{

Tango::ConstDevString argout;

cout << “The received string is “ << argin << endl;
argout = “Hola todos”;

return argout;
}

C++ : Command Memory
Management

� For array dynamically allocated (Pogo)
– Memory freed by Tango (how lucky are the users!)

Tango::DevVarLongArray *MyDev::dev_array()
{

05/06/2010 152

{
Tango::DevVarLongArray *argout = new Tango::DevVarLongArray();

output_array_length = …..;
argout->length(output_array_length);
for (unsigned int i = 0;i < output_array_length;i++)

(*argout)[i] = i;

return argout;
}

C++ : Command Memory
Management

� For array statically allocated
– Tango provides a simple function to build Tango

array types from a pointer (create_xxxx)

Tango::DevVarLongArray *MyDev::dev_array()

05/06/2010 153

Tango::DevVarLongArray *MyDev::dev_array()
{

Tango::DevVarLongArray *argout;

long argout_array_length = ….;
argout = create_DevVarLongArray(buffer, argout_array_length);
return argout;

}

C++ : Command Memory
Management

� For string array dynamically allocated
– Again memory will be freed by Tango layer

Tango::DevVarStringArray *MyDev::dev_str_array()
{

Tango::DevVarStringArray *argout = new Tango::DevVarStringArray();

05/06/2010 154

Tango::DevVarStringArray *argout = new Tango::DevVarStringArray();

argout->length(3);
(*argout)[0] = CORBA::string_dup(“Rumba”);
(*argout)[1] = CORBA::string_dup(“Waltz”);
string str(“Jerck”);
(*argout)[2] = Tango::string_dup(str.c_str());

return argout;
}

C++ Attribute Memory
Management

� Designed to reduce data copy
– Uses a pointer to a memory area which by default is not

freed

void MyDev::read_LongSpecAttr(Tango::Attribute &attr)
{

…..
attr.set_value(buffer);

05/06/2010 155

void MyDev::read_LongSpecAttr(Tango::Attribute &attr)
{

long length = …..
long *buffer = new long[length];

attr.set_value(buffer,length,0,true);
}

attr.set_value(buffer);
}

But it is possible to ask Tango to free the allocated memory

C++ : Attribute Memory
Management

� What about a string spectrum attribute ?
void MyDev::read_StringSpecNoRelease(Tango::Attribute &attr)
{

attr_str_array[0] = “Donde esta”;
attr_str_array[1] = “la cerveza?”;

attr.set_value(attr_str_array,2);
}

Class MyDev:…..
{
….
DevString attr_str_array[2];
};

05/06/2010 156

}

void MyDev::read_StringSpecRelease(Tango::Attribute &attr)
{

Tango::DevString *str_array = new Tango::DevString [2];

str_array[0] = Tango::string_dup(“La cerveza”);
str_array[1] = Tango::string_dup(“esta en la nevera”);

attr.set_value(str_array,2,0,true);
}

OS signals in a Device Server

� It is UNSAFE to do what you want in a signal
handler

� Device servers provide a dedicated thread for
signal handling

05/06/2010 157

signal handling
– You can code what you want in a Tango device

signal handler

� Use the register_signal() and
unregister_signal() methods to
register/unregister signal handlers

OS signals in a Device Server

� Code your handler in the signal_handler()
method

� You can install a signal_handler on a device
basis if you filter the registering/un-registering

05/06/2010 158

basis if you filter the registering/un-registering
methods

� It is also possible to install a signal handler at
class level

Attribute Alarms

� Two types of alarms
– On value
– On read different than set

� Alarm on value
– Two thresholds called ALARM and WARNING

05/06/2010 159

– Two thresholds called ALARM and WARNING

min_alarm min_warning max_warning max_alarm

ATTR_ALARM

ATTR_WARNING

ATTR_VALID

ATTR_WARNING

ATTR_ALARM

ALARM ON ALARM
Dev state

ATTR quality

ATTR value

Attribute Alarms

� Read value different from set value
– Two parameters to tune this alarm

• The authorized delta on value
• The delta time between the last attribute setting and the

attribute value check

05/06/2010 160

attribute value check

– Obviously, only on Read-Write attributes and not
available for string and boolean

Attribute Alarms

� Six parameters to tune the alarm part of the
attribute configuration
– min_alarm, min_warning, max_warning,

max_alarm

05/06/2010 161

max_alarm
– delta_t, delta_val

� Attribute alarms are cheked during the State
command (attribute) execution

Multi Classes Device Server

� Define which Tango classes are embedded in
your server
– C++ : in the class_factory file
– Python : in the script ‘main’ part

05/06/2010 162

� To communicate between classes, use the
DeviceProxy instance

� All devices of all classes are “exported”
� Classes are created in the defined order and

destroyed in the reverse order

Multi Classes Device Server

� C++ example of a multi classes device server

#include <tango.h>
#include <SerialClass.h>
#include <ParagonClass.h>

05/06/2010 163

#include <ParagonClass.h>
#include <PLCmodbusClass.h>
#include <IRMirrorClass.h>

void Tango::DServer::class_factory()
{

add_class(Serial_ns::SerialClass::init("Serial"));
add_class(Paragon_ns::ParagonClass::init("Paragon"));
add_class(PLCmodbus::PLCmodbusClass::init("PLCmodbus"));
add_class(IRMirror_ns::IRMirrorClass::init("IRMirror"));

}

Multi Classes Device Server

� Python example of multi classes device
server

import PyTango

05/06/2010 164

import PyTango
import CableCar
import SkiResort

if __name__ == ‘__main__’:
py = PyTango.Util(sys.argv)
py.add_TgClass(SkiLiftClass, Skilift, ’SkiLift’)
py.add_TgClass(CableCar.CableCarClass, CableCar.CableCar, ’CableCar’)
py.add_TgClass(SkiRessort.SkiResortClass, SkiRessort.SkiResort, ’SkiResort’)

Multi Classes Device Server

� C++ server build:
– The classes need to linked together
– For C++, Pogo generates a Makefile with the

options

05/06/2010 165

options
• make lib : to add the class to the static class library

libtgclasses.a
• make shlib : to create a shared libray per class. For a

class called MyClass the shared library will have the
name MyClass.so

Multi Classes Device Server

� Python server build:
� It is possible to mix C++ and Python classes within

the same python device server
� The C++ class has to be compiled as shared

05/06/2010 166

� The C++ class has to be compiled as shared
library

� The shared library has to be in the
LD_LIBRARY_PATH environment variable

�Use the add_Cpp_TgClass() method

Multi Classes Device Server

� C++ class in Python server:

import PyTango
import CableCar
import SkiResort

05/06/2010 167

import SkiResort

if __name__ == ‘__main__’:
py = PyTango.Util(sys.argv)
py.add_Cpp_TgClass(‘Modbus’,’Modbus’)

py.add_TgClass(SkiLiftClass,Skilift,’SkiLift’)
py.add_TgClass(CableCarClass,CableCar,’CableCar’)
py.add_TgClass(SkiResortClass,SkiResort,’SkiResort’)

Exercise 8

� Join the classes MaxLabPowerSupply and
MultiMaxLabPowerSupply in one device
server process

04/28/10 168

The Threading Model

� omniORB is a multi-threaded ORB
– A Tango device server also…

� One thread is created in a device server for
each client

05/06/2010 169

each client
� A scavenger thread destroys thread(s)

associated to unused connections (omniORB
feature)

� Not always adapted to hardware access
� Tango also has its own polling and event

threads

The Threading Model

� Each Tango device has a monitor to serialize
the device access.

� Four modes of serialization
– By device (the default)
– By class (one monitor for a Tango class)

05/06/2010 170

– By class (one monitor for a Tango class)
• Access to all devices of a class is serialized
• Use this model if your Tango device needs to access a

non threadsafe library

– By process (one monitor for the whole Tango
device server)

– No serialization (extreme care)

The Threading Model

� C++ :
� The Util::set_serial_mode() method is used to set the

serialization model in the main function

int main(int argc, char *argv[])
{

05/06/2010 171

{
try
{

Tango::Util *tg = Tango::Util::init(argc,argv);

tg->set_serial_model(Tango::BY_CLASS);

tg->server_init();
…..

The Threading Model

� Python :
� The Util.set_serial_mode() method is used to set

the serialization model in the main part

If __name__ == ‘__main__’:
try:

05/06/2010 172

try:
py = PyTango.Util(sys.argv)

py.add_TgClass(SkiliftClass,SkiLift,’SkiLift’)

U = PyTango.Util.instance()
U.set_serial_model(PyTango.SerialModel.BY_CLASS)

U.server_init()
……

Abstract Classes

� Based on the C++ abstract classes (or Java
interfaces)

� A way to standardize interfaces
– What is the minimum number of

commands/attributes that my kind of device

05/06/2010 173

commands/attributes that my kind of device
should provide

– Write an abstract class which defines only this
minimum (no code) with Pogo

– Write the concrete class which inherits from the
abstract class

Abstract Classes

� This allows to have a minimum common
interface/behavior for the same type of device

� If possible, an application uses only the
minimum interface defined in the abstract

05/06/2010 174

minimum interface defined in the abstract
class and is independent of the real hardware

� Pogo also supports writing of the abstract
class itself.

Abstract Classes

05/06/2010 175

Abstract Classes

� The next major version of Pogo will allow real
inheritance of Tango classes
– Base classes are not only interface classes
– Base classes can be easily extended

05/06/2010 176

– Base classes can be easily extended

� C++ version in beta test
� Python not yet started

Abstract Classes

05/06/2010 177

Device Server on Windows

� Two kinds of Tango device servers on
Windows
– Running as a Windows console application

05/06/2010 178

• No changes

– Running as a Windows application
• Written using MFC
• Written using Win32 API

DS on Windows

05/06/2010 179

Device server on Windows

� With the Win32 API
– Very similar to a traditional “main” but

• Replace main by WinMain
• Display message box for errors occurring during the

device server start-up phase

05/06/2010 180

• Code the Windows message loop

– See example in doc chapter 8.5.3

� With MFC, see chapter 8.5.2
� Don’t forget to link your device server with the

Tango windows resource file

Device Server on Windows

� Take extreme care with the kind of libraries
used for linking (No mix)

� Tango supports

05/06/2010 181

– Multithreaded (/MT)
– Debug Multithreaded (/MTd)
– Multithreaded DLL (/MD)
– Debug Multithreaded DLL (/MDd)

Device Server on Windows

� A Tango device server is able to run as a
Windows service but
– Needs changes in the code (See doc chapter

8.5.4)

05/06/2010 182

8.5.4)
– Needs to be registered in the Windows service

manager
• A new set of options is available when a device server is

used as a Windows service
– -i, -u or -s

Tango Training:
Part 8 : Advanced Features

� Tango without database
� Multi CS / Multi DB

05/06/2010 183

� Tango adminstration
� Server Wizard

DS using a File as Database

� Tango device server supports using a file
instead of the database

� Generate the file with Jive
– Choose server -> right click -> save server data

05/06/2010 184

– Choose server -> right click -> save server data

� It is possible
– Get, update, delete class properties
– Get, update, delete device properties
– Get, update, delete class attribute properties
– Get, update, delete device attribute properties

DS using a File as Database

05/06/2010 185

DS using a File as Database

� Start the device server on a specified port

� Device name used in a client must be

MyDs inst –file=<file_path> -ORBendPoint giop:tcp::<port>

05/06/2010 186

� Device name used in a client must be
changed
– With database:

• sr/d-fuse/c04

– With file as database:
• tango://<host>:<port>/sr/d-fuse/c04#dbase=no

DS using a File as Database

� Limitations
– Modifications are not reported back to the

database
– No check that the same device server is running

05/06/2010 187

– No check that the same device server is running
twice

– Manual management of host/port
– No alias

DS not using a Database at all!

� It is also possible to start a device server
without using a database at all
– Do not code database access within the device

server…

05/06/2010 188

server…

� The option is –nodb
� Another option –dlist allows the definition of

device names at the command line for the
highest tango class

DS not using a Database at all

� A method DeviceClass::device_name_factory is used
to define device names for a class, when it is not
possible to define them at command line

05/06/2010 189

MyDs inst –nodb –dlist id13/pen/1,id13/motor/2
-ORBendPoint giop:tcp::<port>

DS not using a Database at all

� Change of device name
– tango://<host>:<port>/sr/d-fuse/c04#dbase=no

� Limitation

05/06/2010 190

– The same as for a server with file database
– No properties at all
– No events

Multi TANGO_HOST

� A client running in control system A is able to
access devices running in control system B
by specifying the correct name

� Full Tango device name syntax

05/06/2010 191

� Full Tango device name syntax

� Examples
– tango://freak:1234/id00/pen/c11#dbase=no
– tango:://orion:10000/sr/d-vlm/1

[protocol://][host:port]device_name[/attribute][->p roperty][#dbase=xx]

Tango Control System with Several
Database Servers

� Defined using the TANGO_HOST environment
variable

� Client and servers will automatically switch from one
server to the other if one dies

TANGO_HOST=controls01:10000,controls01:15000

05/06/2010 192

TANGO_HOST=controls01:10000,controls01:15000

DB 1
on port
10000

MySQL

DB 2
on port
15000

controls01

Tango CS Administration

� The goal:
– Overview of all hosts in a control system and all

running device servers
– Start/stop device servers in the control system

from a central point

05/06/2010 193

from a central point
– Diagnose rapidly problems or failures

� To administrate a Tango control system you
need:
– The Starter device server on every host
– Astor, the administration application

Tango CS Administration

� The Starter server is able to
– Start even before the database is running and wait for it
– Get the list of device servers configured for the host from the

database
– Start device server(s)

• Manage 5 (default) startup levels for ordered startup

05/06/2010 194

• Manage 5 (default) startup levels for ordered startup

– Kill a device server (command “kill” of the admin device)
– Check that a device server is running.
– Ping the device server process admin device to check if it is

alive
– Check if the notifd is running

Tango CS Administration

� Run one Starter device server per host in the
control system

� Start the Starter device server using the host
name as instance name

05/06/2010 195

name as instance name

� The starter device name is (only one device)

Starter <host>

tango/admin/<host>

Tango CS Administration

� Astor is a graphical interface to the starter
device(s) and is able to
– Manage host(s) in a tree structure
– Display the state of hosts and device servers
– Start / Stop several servers on several host(s) with

05/06/2010 196

– Start / Stop several servers on several host(s) with
some clicks

– See the device server output
– Open a window on a host
– Help you creating a new Starter entry for a new

host

Tango CS Administration

� Tools available within Astor:
– Jive
– Polling thread manager

05/06/2010 197

– Polling thread configuration and profiling
– Event configuration and testing
– Device dependency tree

Tango CS Administration

05/06/2010 198

Tango CS Administration

05/06/2010 199

� Host (Starter) actions:
– Open a control panel (see servers)
– Remote login (not for win32)

Tango CS Administration

05/06/2010 200

– Starter test
– Clone (create a new Starter in database)
– Cut /Paste (to manage tree)
– Edit properties (Starter $PATH, comments…)
– Remove

� Server actions:
– Start / kill server
– Restart (kill wait a bit and start)
– Set startup level

Tango CS Administration

05/06/2010 201

– Set startup level
– Polling management
– Configuration (using the server wizard)
– Server and class info
– Test a device
– Check states
– See standard error

The Device Wizard

� Available from Jive or Astor
� Allows a user to create and configure a new device

server dynamically in the database without
knowledge on

05/06/2010 202

– Available classes in the server
– Usable device properties when creating new devices

� The wizard will
– Automatically retrieve class properties and will ask for new

values
– Automatically retrieve device properties and will ask for new

values

The Device Wizard

05/06/2010 203

Polling Management

� Available from Astor
� Thread pool management
� Polling configuration

05/06/2010 204

� Polling configuration
� Polling profiling

Polling Management

05/06/2010 205

Event Manager

� Available from Astor
� Configure periodic, change and archive

events

05/06/2010 206

� Subscribe and test a set of events

Event Manager

05/06/2010 207

Device Dependency Tree

� Available from Astor
� Shows all open connections to sub devices

for every device in a device server

05/06/2010 208

� Connections which cannot be directly
attributed to a device are listed under the
administration device name

Device Dependency Tree

05/06/2010 209

Access Control
� Allows to restrict user access on devices:

– Reading is always possible
– Writing must be allowed

� A default access need to be defined
� For a user can be defined:

05/06/2010 210

� For a user can be defined:
– A list of allowed host or network addresses
– A list of READ_WRITE or READ_ONLY devices

Access Control
� To enable access control:

– Create the free property CtrlSystem (if not yet
available)

– Start the TangoAccessControl service as
TangoAccessControl 1TangoAccessControl 1

– Execute the command RegisterService on the
device sys/access_control/1

– Start Astor and open the Access Control panel
from the tools menu

05/06/2010 211

All user are in read only mode.
(default mode)

User id01 can access only devices of the domain FE
from it's network.

How to configure TANGO access control:

Access Control

from it's network.

Operator can access all Tango devices
from control room networks.

User verdier (administrator) can access all Tango devices
from all ESRF network.

Exercise 9

� Add the device server with a start-up level in
Astor

� Create a polling thread for every
MaxLabPowerSupply device and configure

04/28/10 213

MaxLabPowerSupply device and configure
the polling of the Current attributes

� Configure change events for the Current
attributes and test the events

Tango Training: Part 9:
Graphical User Interfaces

� GUI Toolkits
� ATK
� Synoptic Views
� Panel Builder

05/06/2010 214

� Panel Builder

GUI Toolkits

� Java :
– ATK based on Java Swing
– Widgets a Java Beans

� C++ :� C++ :
– Qtango based on Qt
– Can be used in QtDesigner

� Python
– Tau based on PythonQt
– Can be used in QtDesigner

05/06/2010 215

GUI Toolkits

� All toolkits follow the MVC model
� All toolkits are based on a core and a widget

libray
� All toolkits implement a device and an

attribute factory (DeviceProxy only once)
� All toolkits abstract data reception

– Use events when available
– Otherwise polling

05/06/2010 216

GUI Toolkits
• Provides a framework to speed up the
development of Tango Applications

• Helps to standardize the look and feel of
the applications

• Implements the core of “any” Tango Java

05/06/2010 217

• Implements the core of “any” Tango Java
client

• Is extensible

ATK Software Architecture

Application

05/06/2010 218

Java Swing Tango Java API

Tango ATK

ATK Software Architecture

Model View

Application

Control

ATKCore ATKWidget
Attribute NumberSpectrumViewer

Myviewer.setModel(coreObject)

05/06/2010 219

Attribute

AttributeList

Command

CommandList

… etc.

NumberSpectrumViewer

NumberScalarListViewer

CommandComboViewer

StateViewer

… etc.

Tango Java API Java Swing

Inside ATK
ATKCoreATKCore sub-package provides the classes which implement the model

Model

ATKCoreATKCore Tango Java APITango Java API

Attribute Change Event

ATK Attribute Viewer

ATK Attribute Viewer Notify all it’s
attribute listeners

ATKWidgetATKWidget
View

05/06/2010 220

Attribute Tango Device Attribute
Connects to

Subscribes to Tango Events

Attribute Change Event
ATK Attribute Viewer

ATK Error Viewer

attribute listeners

Error occurs

Notify all it’s error
listeners

Inside ATK
ATKWidgetATKWidget sub-package provides the classes to view and to interact
with ATKCore objects

NumberSpectrumViewer NumberImageViewer

ATKWidgetATKWidget
View

05/06/2010 221

ScalarListViewerCommandComboViewer

Java SwingJava Swing

Synoptic

Jdraw editor to draw the synoptic with vector graphics

05/06/2010 222

Associate parts of the drawing to Tango
components (attributes, commands)
Give the “panel” class name to be popped
up when this object is clicked

Synoptic

05/06/2010 223

Graphical component libraries can be created

Synoptic
Launch the ready to use ATK application “SimpleSynopticAppli” to test
the synoptic at run time

05/06/2010 224

Synoptic
Design your own specific ATK application using your favorite Java IDE

05/06/2010 225

Synoptic
Final synoptic application

05/06/2010 226

Panel Builder JDDD

� JDDD = Java Doocs Data Display
http://jddd.desy.de

� Developed at DESY (MCS group)� Developed at DESY (MCS group)
� Interactive panel builder
� Stores panels in XML format
� Can use ATK widgets as plugin

05/06/2010 227

Panel Builder JDDD

� Interesting concepts
– Hierarchical panel usage
– Can handle several application layers
– Address inheritance through the components is – Address inheritance through the components is

possible
• Configure a device name only once for the whole panel

– Allows the use of a SVN repository to store and
retrieve panel files

– Easy to use logic and animation features
– Wild card addressing for ATK widgets

05/06/2010 228

Panel Builder JDDD

05/06/2010 229

Examples
More information : �http://www.tango-controls.org

�http://www.tango-controls.org/tutorials

05/06/2010 230

Exercise 10

� Create a panel or synoptic to drive three
MaxLabPowerSupply devices
� Commands On, Off
� Current reading and writing

04/28/10 231

� State and status

Tango Training:
Part 10 :

Archiving System

� HDB

05/06/2010 232

� HDB
� TDB
� Snapshots

Archiving System

� A set of three databases to keep history of
what’s going on in the control system
– HDB (History Database)
– TDB (Temporary Database)

05/06/2010 233

– Snap (Snapshot database)

� Two supported underlying database systems
– Oracle (Soleil)
– MySQL (Alba, Elettra, ESRF)

Archiving System

� Implemented using
– A set of Java device servers to

• Get data from the control system
• Send extracted data to the requesting client

– JDBC to access the database itself

05/06/2010 234

– JDBC to access the database itself

� Running 7 days a week, 24 hours a day

HDB / TDB

� Storage of data coming from attributes only
– Command result storage is not supported

� HDB is dedicated to long term storage
– Data are never deleted

05/06/2010 235

– Smallest storage period = 10 sec (0.1 Hz)

� TDB is dedicated to temporary storage
– 3 days max (configurable)
– Smallest storage period = 0.1 sec (10 Hz)

HDB / TDB

� Several storage modes:
– Periodic: Data stored at a fixed period (mandatory)
– Different:

• Data stored when reading is different from the last stored
value

05/06/2010 236

value
• Data stored when the difference between read value and

last stored value is greater/lower than an absolute limit
• Data stored when the difference between read value and

last stored value greater/lower than a limit in %

– Threshold: Data stored greater/lower than a pre-
defined threshold

HDB / TDB

� Device servers common for HDB / TDB
– ArchivingManager

• Provide global command(s)
• Load balancing

05/06/2010 237

HDB

� Device servers for HDB
– HdbArchiver(s)

• Collect data from the control system and store them in the
database

– Uses polling of devices
– Can be configured to receive archiving events

» Not yet documented

05/06/2010 238

» Not yet documented
» Only handled by Mambo for data extraction

– HdbExtractor(s)
• Extract data from the database and send them to caller

– HdbArchivingWatcher
• Diagnosis tool : detecting abnormal archiving interruption
• Recovery : reactivate archiving on failed attributes

TDB

� Device servers for TDB
– TdbArchiver(s)

• Collect data from the control system and store them in
the database

– Uses only polling

– TdbExtractor(s)

05/06/2010 239

– TdbExtractor(s)
• Extract data from the database and send them to caller

– TdbArchivingWatcher
• Diagnosis tool : detecting abnormal archiving interruption
• Recovery : reactivate archiving on failed attribute

HDB / TDB

� Mambo
– Configure HDB and TDB
– Display of data stored in HDB / TDB
– Handle user configurations

� Mambo as web-start application

05/06/2010 240

� Mambo as web-start application
– Uses the Tango web protocol

� E-Giga
– Display of data coming from HDB in your WEB

browser

HDB / TDB
MAMBO : Configuration and Extraction application

05/06/2010 241

Exercise 11

� Store the currents of the
MaxLabPowerSupply devices
� in HDB

� Every 60 seconds
� On value change, check every 10 seconds

04/28/10 242

� On value change, check every 10 seconds

� In TDB
� Every second

� Read stored data with Mambo
� Read stored data with AtkMoni from the HDB

extractor server

SNAP
� Capability to take a picture of a set of

attributes at a time
– Motors positions before a planned electric halt

� Compare quickly and easily the attributes
valuesvalues
– Before and after an experience to analyse the

beamline parameters evolution

� Send instructions easily to several
equipments
– Set the beamline in a configuration reference

05/06/2010

SNAP

� Device servers for Snap
– SnapManager

• Manage snapshot configuration
• Send command(s) to SnapArchiver

– SnapArchiver

05/06/2010 244

– SnapArchiver
• To take the snapshot and send the data to the database

– SnapExtractor
• To extract snapshot data from database

SNAP
BENSIKIN : Configuration and Exploitation

05/06/2010 245

Exercise 12

� Configure a snapshot to store the actual
Current values of the MaxLabPowerSupply
devices

� Change the power supply Current set points

04/28/10 246

� Change the power supply Current set points
� Apply the stored snapshot to the power

supplies

Tango Training:
Part 11 :

Miscellaneous

� Getting software

05/06/2010 247

� Getting software
� Who is doing what

Getting the Tango Core

� You can download Tango from the ESRF Tango
WEB page (http://www.tango-controls.org/download)
– As a source package for UNIX like OS
– As a Windows binary distribution

� For Unix (and co), do not forget to first download,

05/06/2010 248

� For Unix (and co), do not forget to first download,
compile and install
– omniORB
– omniNotify

� For Windows all libraries and binaries for omniORB
and omniNotify are included in the distribution.

Getting the Tango Core

� In both distributions, you have
– Tango core (libraries and jar files)
– Database device server and a script to create the

Tango database for MySQL
– Pogo, Jive, LogViewer

05/06/2010 249

– Pogo, Jive, LogViewer
– Astor and Starter device server
– A test device server (TangoTest)
– ATK

Getting the Tango Core

� For the UNIX like OS source distribution, you
have to compile everything with the famous
three commands
– configure

05/06/2010 250

– configure
– make
– make install

Tango Core Sources

� All Tango core sources are stored in a CVS
server hosted by SourceForge called
Tango-cs
(http://sourceforge.net/projects/tango-cs/)

� On this project, you find sources for

05/06/2010 251

� On this project, you find sources for
– C++ libraries and Java API
– Database, Starter and TangoTest device servers
– Pogo, Astor, Jive, LogViewer and ATK
– Binding for Python, Matlab and Igor
– The Tango archiving system

Getting Tango Classes

� Nearly all Tango classes (> 200) are available
for download on the WEB from Tango related
WEB sites

� Two kind of classes

05/06/2010 252

� Two kind of classes
– Common interest classes and interfaces to

commercial hardware
– Specific classes to interface institute specific

hardware

Getting Tango Classes

� On the WEB for each class, you find the
HTML pages generated by Pogo

� Common interest classes sources are stored
in a CVS server hosted by SourceForge

05/06/2010 253

in a CVS server hosted by SourceForge
– Project name = tango-ds
– http://sourceforge.net/projects/tango-ds/

� Local classes sources are stored in a local
CVS repository at each institute

Getting Tango Classes

05/06/2010 254

Tango Core Development

� ELETTRA:
– Alarm system
– Canone: A WEB interface using PHP
– E-Giga: A WEB interface above the Tango

05/06/2010 255

– E-Giga: A WEB interface above the Tango
archiving system

– QTango: ATK like GUI toolkit in C++
• Using QT

Tango Core Development

� SOLEIL:
– Archiving system

• Using ORACLE or MySQL

– Snapshot system

05/06/2010 256

– Snapshot system
• Using ORACLE or MySQL

– Matlab and Labview bindings
– WEB protocol for ATK

Tango Core Development

� ALBA:
- Python binding (PyTango release 4.x)
- Sardana: Control software for experiments

05/06/2010 257

- Tau: ATK like GUI toolkit in Python
- Using QT

Tango Core Development

� ESRF:
– Tango libraries (C++ and Java)
– Pogo

05/06/2010 258

– Jive
– Astor / Starter
– ATK

