
TANGO Introduction

Distributed and Fun



Who am I?
● Mihael Koep
● Software Developer

@ Softwareschneiderei GmbH

in Karlsruhe
● Development and support for TANGO Servers and 

infrastructure @ ANKA



Softwareschneiderei GmbH



What is TANGO?
● Framework for a distributed control system
● Multi-Language (C++, Java, Python)
● Multi-Platform (Windows, Linux, Solaris etc.)
● Integration into many 3rd-party systems (Matlab, 

LabVIEW, IGOR Pro etc.)
● Unified interface to hardware devices and equipment



TANGO Collaboration



How TANGO Collaboration works
● Two collaboration meetings per year
● One TANGO coordinator per site
● A mailing list (tango@esrf.fr)
● Project Web Site http://www.tango-controls.org
● Open Source Software (OSS) hosted on SourceForge

– Change requests

– Patches
– Bugreports

http://www.tango-controls.org/


TANGO concepts
● Three major building blocks

– TANGO device
– TANGO device server

– TANGO database

● TANGO client API

Database
server

TANGO
client

Device server

Device

Device

Device
CORBA
requests

discover register



TANGO database
● Database server is a TANGO server with a device itself
● MySQL-backend for storing configuration

– Register device servers and devices
– Remember device properties
– Memorize device attributes (optional)

● Communicate device end points (IOR) for p2p- 
communication



TANGO database via Jive

Device
 Server

Server
instance

Device
 class

Devices



TANGO device server
● Runnable piece of software containing TANGO devices

– Device classes are defined in the code
– Device instances are defined in the TANGO database

● Server instances are registered at the TANGO database
– Identified by executable name + instance name

● Creates devices specified in database on startup
● Can be written in C++, Java or Python



Typical Device Server

MultiAxisMotorController AxisClass

Axis
id1/axis/x

Axis
id1/axis/y

Axis
id1/axis/z

ControllerClass

Controller
id1/controller/1Controller Library

Controller
hardware



TANGO device
● Fundamental element of interaction
● Interface to existing hardware or logical devices
● Identified by a three field name 

„domain/family/member“
● Every device belongs to a TANGO class
● Configured by device properties
● Exposes attributes and commands



Real world devices

One device

One deviceOne device



A closer look at TANGO devices
● Commands: perform an action on a device

● Attributes: represent physical values

● Properties: configuration used at initialisation
– e.g. IP adress, default shutter time

● State and Status: indicators for current device state



TANGO Device via POGO

Device
class

Device
propterties

Commands

Attributes

Device
states



Commands
● May have one input parameter and a return value

– Only limited set of data types
– But also arrays

● For example: PowerOn(), Stop(axisNumber), StopAll()



Attributes
● Self-describing data via attribute properties

– e.g Description, Unit, data_type, min/max, alarm values

● May be read-only, write-only or read-write
● All typical primitive data types like boolean, integer, 

double, string etc.
● Three data formats

– Scalar (one value)

– Spectrum (one-dimensional array)
– Image (two-dimensional array)



Properties
● Properties are stored in the TANGO database
● Manage using the tool Jive
● Can be defined at class, device and attribute level
● Basic data types as scalar or array values



State
● State management is essential so clients can rely on it
● 14 defined states are available

– e.g ON, OPEN, MOVING, FAULT, ALARM etc.

● Explanatory message available as Status 
attribute/command

● Support through „state machine“ and „allowed states“



TANGO clients
● Can be written in C++, Java, Python
● Implementations for many tools exist

– e.g. Matlab, LabView, IgorPro, concert

● Different communication mechanisms
– Synchronous calls
– Asynchronous calls

– Events

– Group Calls



Synchronous Calls
● Network transparency etc. using DeviceProxy
● Easy to use calls like command_inout(), read_attribute()
● Result objects can contain data and metadata
● Exceptions are of type DevFailed

Client Device

Request (blocking)

Response



Asynchronous Calls
● Non-blocking request to a device
● Device notifies clients via callback
● No changes on the server side required
● Supported for

– command_inout

– read_attribute(s)
– write_attribute(s)



Events
● Different communication paradigm

– No polling from the clients
– Devices notify clients about „interesting“ changes

– Only available for attributes

● Clients need to subscribe to events and are notified 
using callbacks

● Different types like Periodic, Change, Data ready etc.



TANGO tools
● Jive

– Database management

● POGO
– Device generation

● Astor
– Device server control

● AtkPanel
– Ad-hoc device gui



Questions?
● Thank you for your attention!
● Feel free to ask questions



Softwareschneiderei GmbH



APIs and Frameworks
● JTango for Java
● PyTango for Python
● GUI-Toolkits

– ATK for Java/Swing

– Taurus for Python/Qt4
– Qtango for C++/Qt4

● Jddd
● Sardana


	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27

