
TANGO Introduction

Distributed and Fun



Who am I?
● Mihael Koep
● Software Developer

@ Softwareschneiderei GmbH

in Karlsruhe
● Development and support for TANGO Servers and 

infrastructure @ ANKA
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What is TANGO?
● Framework for a distributed control system
● Multi-Language (C++, Java, Python)
● Multi-Platform (Windows, Linux, Solaris etc.)
● Integration into many 3rd-party systems (Matlab, 

LabVIEW, IGOR Pro etc.)
● Unified interface to hardware devices and equipment



TANGO Collaboration



How TANGO Collaboration works
● Two collaboration meetings per year
● One TANGO coordinator per site
● A mailing list (tango@esrf.fr)
● Project Web Site http://www.tango-controls.org
● Open Source Software (OSS) hosted on SourceForge

– Change requests

– Patches
– Bugreports

http://www.tango-controls.org/


TANGO concepts
● Three major building blocks

– TANGO device
– TANGO device server

– TANGO database

● TANGO client API
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TANGO database
● Database server is a TANGO server with a device itself
● MySQL-backend for storing configuration

– Register device servers and devices
– Remember device properties
– Memorize device attributes (optional)

● Communicate device end points (IOR) for p2p- 
communication



TANGO database via Jive
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TANGO device server
● Runnable piece of software containing TANGO devices

– Device classes are defined in the code
– Device instances are defined in the TANGO database

● Server instances are registered at the TANGO database
– Identified by executable name + instance name

● Creates devices specified in database on startup
● Can be written in C++, Java or Python



Typical Device Server
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TANGO device
● Fundamental element of interaction
● Interface to existing hardware or logical devices
● Identified by a three field name 

„domain/family/member“
● Every device belongs to a TANGO class
● Configured by device properties
● Exposes attributes and commands



Real world devices
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A closer look at TANGO devices
● Commands: perform an action on a device

● Attributes: represent physical values

● Properties: configuration used at initialisation
– e.g. IP adress, default shutter time

● State and Status: indicators for current device state



TANGO Device via POGO
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Commands
● May have one input parameter and a return value

– Only limited set of data types
– But also arrays

● For example: PowerOn(), Stop(axisNumber), StopAll()



Attributes
● Self-describing data via attribute properties

– e.g Description, Unit, data_type, min/max, alarm values

● May be read-only, write-only or read-write
● All typical primitive data types like boolean, integer, 

double, string etc.
● Three data formats

– Scalar (one value)

– Spectrum (one-dimensional array)
– Image (two-dimensional array)



Properties
● Properties are stored in the TANGO database
● Manage using the tool Jive
● Can be defined at class, device and attribute level
● Basic data types as scalar or array values



State
● State management is essential so clients can rely on it
● 14 defined states are available

– e.g ON, OPEN, MOVING, FAULT, ALARM etc.

● Explanatory message available as Status 
attribute/command

● Support through „state machine“ and „allowed states“



TANGO clients
● Can be written in C++, Java, Python
● Implementations for many tools exist

– e.g. Matlab, LabView, IgorPro, concert

● Different communication mechanisms
– Synchronous calls
– Asynchronous calls

– Events

– Group Calls



Synchronous Calls
● Network transparency etc. using DeviceProxy
● Easy to use calls like command_inout(), read_attribute()
● Result objects can contain data and metadata
● Exceptions are of type DevFailed

Client Device

Request (blocking)

Response



Asynchronous Calls
● Non-blocking request to a device
● Device notifies clients via callback
● No changes on the server side required
● Supported for

– command_inout

– read_attribute(s)
– write_attribute(s)



Events
● Different communication paradigm

– No polling from the clients
– Devices notify clients about „interesting“ changes

– Only available for attributes

● Clients need to subscribe to events and are notified 
using callbacks

● Different types like Periodic, Change, Data ready etc.



TANGO tools
● Jive

– Database management

● POGO
– Device generation

● Astor
– Device server control

● AtkPanel
– Ad-hoc device gui



Questions?
● Thank you for your attention!
● Feel free to ask questions
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APIs and Frameworks
● JTango for Java
● PyTango for Python
● GUI-Toolkits

– ATK for Java/Swing

– Taurus for Python/Qt4
– Qtango for C++/Qt4

● Jddd
● Sardana
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